第八章面板数据模型计量经济学(陶长琪)ppt课件.ppt

上传人:飞****2 文档编号:68507992 上传时间:2022-12-28 格式:PPT 页数:51 大小:653KB
返回 下载 相关 举报
第八章面板数据模型计量经济学(陶长琪)ppt课件.ppt_第1页
第1页 / 共51页
第八章面板数据模型计量经济学(陶长琪)ppt课件.ppt_第2页
第2页 / 共51页
点击查看更多>>
资源描述

《第八章面板数据模型计量经济学(陶长琪)ppt课件.ppt》由会员分享,可在线阅读,更多相关《第八章面板数据模型计量经济学(陶长琪)ppt课件.ppt(51页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确第九章第九章面板数据模型面板数据模型在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确第一节第一节 面板数据面板数据第二节第二节 面板数据回归模型概述面板数据回归模型概述第三节第三节 混合回归模型混合回归模型第四节第四

2、节 变截距回归模型变截距回归模型第五节第五节 变系数回归模型变系数回归模型第六节第六节 效应检验与模型形式设定检验效应检验与模型形式设定检验第七节第七节 面板数据的单位根检验和协整检验面板数据的单位根检验和协整检验第八节第八节 案例分析案例分析在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确 面板数据(面板数据(Panel Data):也叫:也叫平行数据平行数据,指,指某一变量关于横截面和时间两个维度的数据,记为某一变量关于横截

3、面和时间两个维度的数据,记为xit,其中,其中 ,表示,表示N个不同的对象(如个不同的对象(如国家、省、县、行业、企业、个人)国家、省、县、行业、企业、个人),,表示,表示T个观测期。个观测期。第一节第一节 面板数据面板数据在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确平衡面板数据平衡面板数据在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是

4、让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确非平衡面板数据非平衡面板数据在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确扩展的面板模型扩展的面板模型1.伪面板模型:伪面板模型:如果按照某种属性如果按照某种属性(例如,年龄、职业和身份等例如,年龄、职业和身份等)将各期调查对象分成不同的群;对于各个观测期,将各期调查对象分成不同的群;对于各个观测期,选择各群内观测数据的均值选择各群内观测数据的均值

5、(中位数或分位数中位数或分位数),即可构造以群为即可构造以群为个体个体单位的面板数据。我们单位的面板数据。我们把这种以群为个体而构造的人工面板数据为伪面把这种以群为个体而构造的人工面板数据为伪面板数据板数据(Pseudo Panel Data)(Pseudo Panel Data)。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确2.轮换面板轮换面板模型模型:同一个个体可能不愿被一次又一次的被回访,为同一个个体可能不愿被一次又一

6、次的被回访,为了保持调查中个体数目相同,在第二期调查中退了保持调查中个体数目相同,在第二期调查中退出的部分个体,被相同数目的新的个体所替代,出的部分个体,被相同数目的新的个体所替代,这种允许研究者检验这种允许研究者检验“抽样时间抽样时间”偏倚效应偏倚效应(初次采访和随后的采访之间的回答有显著的改(初次采访和随后的采访之间的回答有显著的改变)的存在性叫轮换面板。对于轮换面板,每批变)的存在性叫轮换面板。对于轮换面板,每批加到面板的新个体组提供了检验抽样时间偏倚效加到面板的新个体组提供了检验抽样时间偏倚效应的方法。应的方法。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯

7、度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确3.空间面板空间面板模型模型:当考虑国家、地区、州、县等相关截面数据时,当考虑国家、地区、州、县等相关截面数据时,这些总量个体可能表现出必须处理的截面相关这些总量个体可能表现出必须处理的截面相关性。现在有大量运用空间数据的文献处理这种性。现在有大量运用空间数据的文献处理这种相关性。这种空间相依模型在区域科学和城市相关性。这种空间相依模型在区域科学和城市经济学中比较普遍。具体来说,这些模型使用经济学中比较普遍。具体来说,这些模型使用经济距离测度设定了面板数

8、据的空间自相关性经济距离测度设定了面板数据的空间自相关性和空间结构(空间异质性)。和空间结构(空间异质性)。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确4.计数面板计数面板模型模型:被解释变量是计数面板数据的例子很多。例如,被解释变量是计数面板数据的例子很多。例如,一段时间内一家公司的竟标次数、一个人去看一段时间内一家公司的竟标次数、一个人去看医生的次数、每天吸烟者的数量及一个研发机医生的次数、每天吸烟者的数量及一个研发机构

9、登记专利的数目。虽然可以运用传统面板回构登记专利的数目。虽然可以运用传统面板回归模型对计数面板数据建模,但鉴于被解释变归模型对计数面板数据建模,但鉴于被解释变量具有量具有0 0及非负离散取值的特征,运用泊松面及非负离散取值的特征,运用泊松面板回归模型建模更为合适。板回归模型建模更为合适。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确第二节第二节 面板数据回归模型概述面板数据回归模型概述 一、面板数据回归模型的一般形式一、面板数

10、据回归模型的一般形式 其中,其中,i=1,2,N 表示个表示个N个体;个体;t=1,2,T 表示表示T个时期;个时期;yit为被解释变量为被解释变量,表示第表示第i个个体在个个体在 t 时期时期的观测值;的观测值;xkit 是解释变量是解释变量,表示第表示第k个解释变量对个解释变量对于个体于个体 i 在时期在时期 t 的观测值;的观测值;是待估参数;是待估参数;uit是是随机干扰项。随机干扰项。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出

11、的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确二、二、面板数据回归模型的分类面板数据回归模型的分类根据对截距项和解释变量系数的不同假设,面板数根据对截距项和解释变量系数的不同假设,面板数据回归模型常用

12、:据回归模型常用:混合回归模型混合回归模型、变截距回归变截距回归模型模型和和变系数回归模型变系数回归模型3种类型。种类型。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确混合回归模型的模型形式为混合回归模型的模型形式为第三节第三节 混合回归模型混合回归模型从截面上看,不同个体之间不存在显著性差异从截面上看,不同个体之间不存在显著性差异。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出

13、的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确一、混合回归一、混合回归模型假模型假设设假假设设1:随机干随机干扰项扰项向量向量U的期望的期望为为零向量。零向量。假假设设2:不同个体随机干不同个体随机干扰项扰项之之间间相互独立。相互独立。假假设设3:随机随机误误差差项项方差方差为为常数。常数。假假设设4:随机随机误误差差项项与解与解释变释变量相互独立。量相互独立。假假设设5:解释变量之间解释变量之间不存在多重共线性。不存在多重共线性。假假设设6:随机随机误误差差项项向量服从正向量服从正态态分布,即分布,即在整堂课的教学中

14、,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确二、混合回二、混合回归归模型模型参数估参数估计计混合回混合回归归模型与一般的回模型与一般的回归归模型无本模型无本质质区区别别,只要,只要模型模型满满足足假假设设1 6,可用,可用OLS法估法估计计参数,且估参数,且估计计量是量是线线性、无偏、有效和一致的。性、无偏、有效和一致的。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教

15、学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确若将若将假假设设3的同方差弱化的同方差弱化为为存在异方差,即存在异方差,即则则混合回混合回归归模型的无偏有效估模型的无偏有效估计计量量为为在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确未知参数未知参数 有一致估计为有一致估计为是第是第i个个体的回个个体的回归归模型的模型的OLS回回归归残差残差在整堂课的教学中,刘教师总是让学生带着问

16、题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确三、三、混合回归模型估计的混合回归模型估计的 Eviews操作操作在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确第四节第四节 变截距回归模型变截距回归模型变截距模型是面板数据模型中最常见的一种形式。变截距模型是面板数据模型中最常见的一种形式。该模型允许个

17、体成员存在个体影响,并用截距项的该模型允许个体成员存在个体影响,并用截距项的差别来说明。截距项反应的是个体影响。如果个体差别来说明。截距项反应的是个体影响。如果个体影响是非随机的常量,该模型被称为影响是非随机的常量,该模型被称为个体固定效应个体固定效应变截距模型变截距模型;如果个体影响是随机的,该模型被称;如果个体影响是随机的,该模型被称为为随机效应变截距模型随机效应变截距模型。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确

18、假定在截面个体成员上截距项不同,而模假定在截面个体成员上截距项不同,而模型的解释变量系数是相同的。型的解释变量系数是相同的。变截距变截距回归模型的模型形式为回归模型的模型形式为需要估计的参数个数:需要估计的参数个数:N+K个个在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确一、一、固定效应变截距回归模型固定效应变截距回归模型固定效应固定效应变截距变截距回归模型的模型形式为回归模型的模型形式为最小二乘虚拟变量模型最小二乘虚拟变量模

19、型在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确固定效应变截距回归模型估计(个体)固定效应变截距回归模型估计(个体)如果随机干如果随机干扰项扰项、解、解释变释变量量满满足基本假定,足基本假定,则则利用普通最小二乘法可以得到模型参数的无利用普通最小二乘法可以得到模型参数的无偏、有效一致估偏、有效一致估计计量。量。(1)最小二乘虚)最小二乘虚拟变拟变量(量(LSDV)估)估计计在整堂课的教学中,刘教师总是让学生带着问题来学习,而问

20、题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确 如果随机干如果随机干扰项扰项不不满满足同方差或相互独立足同方差或相互独立的基本假定,的基本假定,则则需要利用广需要利用广义义最小二乘法最小二乘法(GLS)对对模型模型进进行估行估计计。(2)固定效)固定效应应变变截距截距模型的广模型的广义义最小二乘估最小二乘估计计 主要考主要考虑虑4种基本的方差种基本的方差结结构:个体成构:个体成员员截截面异方差、面异方差、时时期异方差、同期相关期异方差、同期相关协协方差和方差和时时期期间间相关相关

21、协协方差。方差。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确 如果随机干如果随机干扰项满扰项满足同方差且同期不相关,足同方差且同期不相关,但随机干但随机干扰项扰项与解与解释变释变量相关,量相关,这时这时,无,无论论是是OLS估估计计量量还还是是GLS估估计计量都是有偏非一致估量都是有偏非一致估计计量,此量,此时时需要采用二需要采用二阶阶段最小二乘法(段最小二乘法(2SLS)对对模型模型进进行估行估计计。(3)固定效)固定效应

22、应变变截距截距模型的二模型的二阶阶段最小二乘估段最小二乘估计计 在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确二、随机效应变截距回归模型(个体)二、随机效应变截距回归模型(个体)在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确模型模型进进一步一步假假设设在整堂课

23、的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确模型存在的问题:同一个模型存在的问题:同一个体成员、不同时期的随机体成员、不同时期的随机干扰项之间存在一定的相干扰项之间存在一定的相关性。关性。普通普通OLS估估计虽计虽然仍是无偏和一致估然仍是无偏和一致估计计,但其不再,但其不再有效估有效估计计,因此,一般用广,因此,一般用广义义最小二乘法(最小二乘法(GLS)对对随机效随机效应应模型模型进进行估行估计计。方差成分模型方差成分模型方差成分

24、方差成分GLS法法在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确随机效应变截距模型的估计随机效应变截距模型的估计EViews按下列步按下列步骤骤估估计计随机效随机效应变应变截距模型(个体)截距模型(个体)在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确第五节第五

25、节 变系数回归模型变系数回归模型 前面所介绍的变截距模型中,横截面成员的个前面所介绍的变截距模型中,横截面成员的个体影响是用变化的截距来反映的,即用变化的截距体影响是用变化的截距来反映的,即用变化的截距来反映模型中忽略的反映个体差异的变量的影响。来反映模型中忽略的反映个体差异的变量的影响。然而现实中变化的经济结构或不同的社会经济背景然而现实中变化的经济结构或不同的社会经济背景等因素有时会导致反映经济结构的参数随着横截面等因素有时会导致反映经济结构的参数随着横截面个体的变化而变化。因此,当现实数据不支持变截个体的变化而变化。因此,当现实数据不支持变截距模型时,便需要考虑这种系数随横截面个体的变距

26、模型时,便需要考虑这种系数随横截面个体的变化而改变的变系数模型。化而改变的变系数模型。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确这种情形意味着模型在截面上既存在个体影这种情形意味着模型在截面上既存在个体影响,又存在结构变化。我们又称该模型为无响,又存在结构变化。我们又称该模型为无约束回归模型。约束回归模型。变系数模型假定在截面个体成员上截距项和模变系数模型假定在截面个体成员上截距项和模型的解释变量系数都不同。型的解释变量系

27、数都不同。需要估计的参数个数:需要估计的参数个数:N(K+1)个个在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确EViews按下列步骤估计按下列步骤估计变系数模型变系数模型:在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确第六节效应检验与模型形式设定检验第六节效

28、应检验与模型形式设定检验 建立面板数据模型前的首要任务是确定被建立面板数据模型前的首要任务是确定被解释变量与截距项和系数的关系,截距项是否解释变量与截距项和系数的关系,截距项是否相同、系数是否一致,是固定效应相同、系数是否一致,是固定效应还是随机效还是随机效应模型,从而避免模型设定的偏差,改进参数应模型,从而避免模型设定的偏差,改进参数估计的有效性。估计的有效性。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确一、一、Hausm

29、an检验检验 在实际应用中,究竟是采用固定效应模型还是在实际应用中,究竟是采用固定效应模型还是采用随机效应模型,我们可以进行模型设定检验。采用随机效应模型,我们可以进行模型设定检验。豪斯曼豪斯曼Hausman(1978)提出了一种严格的统)提出了一种严格的统计检验方法计检验方法Hausman检验。检验。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确固定效应模型固定效应模型 LSDV估计量无偏;估计量无偏;GLS估计量有偏估计量

30、有偏随机效应模型随机效应模型 LSDV和和GLS估计量都无偏,但估计量都无偏,但LSDV估计量有较大方差估计量有较大方差固定效应模型固定效应模型 LSDV估计量和估计量和GLS估计量的估计结估计量的估计结果有较大的差异果有较大的差异随机效应模型随机效应模型 LSDV估计量和估计量和GLS估计量的估计结估计量的估计结果就比较接近果就比较接近Hausman检验的原理检验的原理在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确Hausm

31、an检验的原假设与被择假设检验的原假设与被择假设H0:个体随机效应回归模型个体随机效应回归模型H1:个体固定效应回归模型个体固定效应回归模型设设b,分别为回归系数的分别为回归系数的LSDV估计向量,估计向量,GLS估估计向量。计向量。如果真实模型是个体随机效应回归模型,那么如果真实模型是个体随机效应回归模型,那么b和和 二者差异应该比较小。如果真实模型是个体固定效二者差异应该比较小。如果真实模型是个体固定效应回归模型,那么应回归模型,那么b和和 二者差异应该比较大。二者差异应该比较大。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在

32、整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确 Hausman证明在原假设下,统计量证明在原假设下,统计量W服从自由度服从自由度为为K(模型中解释变量的个数)的(模型中解释变量的个数)的 分布,即分布,即构造构造Hausman检验的检验的W统计量统计量为为 之差的方差,即之差的方差,即在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确为了实现为了实现Hausman检验,必

33、须首先估计一个随检验,必须首先估计一个随机效应模型。然后,选择机效应模型。然后,选择View/Fixed/Random Effects Testing/Correlated Random Effects-Hausman Test,EViews将自动估计相应的固定将自动估计相应的固定效应模型,计算检验统计量,显示检验结果和效应模型,计算检验统计量,显示检验结果和辅助回归结果。辅助回归结果。HausmanHausman检验的检验的检验的检验的EViewsEViews操作操作操作操作在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的

34、教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确二、二、模型形式设定检验模型形式设定检验模型形式设定检验模型形式设定检验 如果模型设定不正确,参数估计将造成较大的如果模型设定不正确,参数估计将造成较大的偏差。所以,在建立面板数据模型的第一步便偏差。所以,在建立面板数据模型的第一步便是检验样本数据究竟属于混合回归模型、变截是检验样本数据究竟属于混合回归模型、变截距回归模型还是变系数回归模型形式,从而避距回归模型还是变系数回归模型形式,从而避免模型设定的偏误。免模型设定的偏误。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的

35、梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确经经常使用的常使用的检验检验是是协协方差分析方差分析检验检验(F检验检验),主,主要分两步要分两步进进行行检验检验:第一步第一步检验检验:是否混合模型:是否混合模型H02:混合回混合回归归模型模型(受受约约束束)H01:变变截距回截距回归归模型模型(受受约约束束)第二步第二步检验检验:是否:是否变变截距回截距回归归模型模型在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师

36、总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确如果接受假如果接受假设设 H02,则则可以可以认为认为模型模型为为混合回混合回归归模型模型,无需,无需进进行下一步的行下一步的检验检验。如果拒。如果拒绝绝假假设设H02,则则需需检验检验假假设设H01。第一步第一步检验检验:是否混合模型:是否混合模型H02:混合回混合回归归模型模型(受受约约束束)在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确如

37、果接受假如果接受假设设 H01,则则可以可以认为认为模型模型为为变变截距截距回回归归模型模型。如果拒。如果拒绝绝假假设设H01,则认为则认为模型模型为为变变系数回系数回归归模型。模型。H01:变变截距回截距回归归模型模型(受受约约束束)第二步第二步检验检验:是否:是否变变截距回截距回归归模型模型在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确 下面介绍假设检验的下面介绍假设检验的 F F 统计量的计算方法。首统计量的计算方法。首

38、先计算先计算变系数变系数变系数变系数回归回归模型模型模型模型的残差平方和,记为的残差平方和,记为S0 0;变变变变截距截距截距截距回归回归模型模型模型模型的残差平方和记为的残差平方和记为S1 1;混合回归模型混合回归模型的残差平方和记为的残差平方和记为S2 2。构造并计算统计量构造并计算统计量在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确 例例9-3在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,

39、由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确第七节第七节 面板数据的单位根检验和协整检验面板数据的单位根检验和协整检验一、面板数据的单位根检验一、面板数据的单位根检验 (一)(一)面板数据的单位根检验分类面板数据的单位根检验分类 (二)(二)面板数据的单位根检验应用举例面板数据的单位根检验应用举例二、面板数据的协整检验二、面板数据的协整检验 (一)(一)检验方法分类检验方法分类 (二)(二)面板数据协整检验的应用举例面板数据协整检验的应用举例在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设

40、置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确 一般情况下可以将面板数据的单位根检验划分一般情况下可以将面板数据的单位根检验划分为两大类:为两大类:一类为一类为相同根相同根情形下的单位根检验,检验方法情形下的单位根检验,检验方法包括包括LLC(Levin-Lin-Chu)检验、检验、Breitung检验;检验;另一类为另一类为不同根不同根情形下的单位根检验,检验方情形下的单位根检验,检验方法包括法包括Im-Pesaran-Skin检验、检验、Fisher-ADF检验和检验和Fisher

41、-PP检验。检验。一、面板数据的单位根检验一、面板数据的单位根检验(一)面板数据的单位根检验分类(一)面板数据的单位根检验分类在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确(二)面板数据的单位根检验应用举例(二)面板数据的单位根检验应用举例在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅

42、入深,所提出的问题也很明确 面板数据的协整检验方法可以分为两大类,面板数据的协整检验方法可以分为两大类,一类是建立在一类是建立在Engle and Granger二步法检验基础二步法检验基础上的面板协整检验,具体方法主要有上的面板协整检验,具体方法主要有Pedroni检验检验和和Kao检验;另一类是建立在检验;另一类是建立在Johansen协整检验基协整检验基础上的面板协整检验。础上的面板协整检验。二、面板数据的协整检验二、面板数据的协整检验(一)(一)检验方法分类检验方法分类在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的

43、教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确 1、Pedroni检验检验 Pedroni提出了基于提出了基于Engle and Granger二步法二步法的面板数据协整检验方法,该方法以协整方程的回的面板数据协整检验方法,该方法以协整方程的回归残差为基础构造归残差为基础构造7个统计量个统计量来检验面板变量之间来检验面板变量之间的协整关系。的协整关系。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深

44、,所提出的问题也很明确 2、Kao检验检验 Kao检验检验和和Pedroni检验遵循同样的方法,都检验遵循同样的方法,都是基于是基于Engle and Granger二步法而发展起来的。二步法而发展起来的。但不同于但不同于Pedroni检验,检验,Kao检验在第一阶段将回检验在第一阶段将回归方程设定为系数相同、截距项不同,第二阶段归方程设定为系数相同、截距项不同,第二阶段基于基于DF检验和检验和ADF检验的原理,对第一阶段求得检验的原理,对第一阶段求得的残差序列进行平稳性检验。的残差序列进行平稳性检验。在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确在整堂课的教学中,刘教师总是让学生带着问题来学习,而问题的设置具有一定的梯度,由浅入深,所提出的问题也很明确(二)面板数据协整检验的应用举例(二)面板数据协整检验的应用举例

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁