《命题-简易逻辑基础知识专题训练.doc》由会员分享,可在线阅读,更多相关《命题-简易逻辑基础知识专题训练.doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、命题、简易逻辑推理基础知识专题训练 常用逻辑用语内 容等级要求ABC命题的四种形式全称量词与存在量词简单的逻辑联结词必要条件、充分条件、充分必要条件一、考试要求二 基础知识1、满足条件,满足条件,若 ;则是的充分非必要条件;若 ;则是的必要非充分条件;2、原命题与逆否命题,否命题与逆命题具有相同的 ;注意:“若,则”在解题中的运用,如:“”是“”的 条件。3全称量词与存在量词全称量词-“所有的”、“任意一个”等,用表示; 全称命题p:; 全称命题p的否定p:。存在量词-“存在一个”、“至少有一个”等,用表示; 特称命题p:; 特称命题p的否定p:;4. (1)要理解“充分条件”“必要条件”的概
2、念:当“若p则q”形式的命题为真时,就记作pq,称p是q的充分条件,同时称q是p的必要条件,因此判断充分条件或必要条件就归结为判断命题的真假.(2)要理解“充要条件”的概念,对于符号“”要熟悉它的各种同义词语:“等价于”,“当且仅当”,“必须并且只需”,“,反之也真”等.(3)数学概念的定义具有相称性,即数学概念的定义都可以看成是充要条件,既是概念的判断依据,又是概念所具有的性质.(4)从集合观点看,若AB,则A是B的充分条件,B是A的必要条件;若A=B,则A、B互为充要条件.(5)证明命题条件的充要性时,既要证明原命题成立(即条件的充分性),又要证明它的逆命题成立(即条件的必要性).三基础训
3、练 1. 命题“”的否命题是( ) A. B.若,则C. D.2已知原命题:“若,则关于的方程有实根,”下列结论中正确的是 ( )A原命题和逆否命题都是假命题 B原命题和逆否命题都是真命题 C原命题和逆命题都是真命题 D原命题是假命题,逆命题是真命题3已知命题,命题的解集是,下列结论:命题“”是真命题; 命题“”是假命题;命题“”是真命题; 命题“”是假命题其中正确的是( )ABCD4.有关命题的说法错误的是 ( )A.命 题“若 则 ”的 逆 否 命 题 为:“若, 则”.B.“”是“”的充分不必要条件.C.若为假命题,则、均为假命题. D.对于命题:使得. 则: 均有.5如果命题“且”是假
4、命题,“非”是真命题,那么( ) A命题一定是真命题 B命题一定是真命题 C命题一定是假命题 D命题可以是真命题也可以是假命题 6. “”是“”的( )充分而不必要条件 必要而不充分条件充分必要条件 既不充分也不必要条件7.命题“若函数(a0,a1)在其定义域内是减函数,则0”的逆否命题是( )A若0,则函数(a0,a1)在其定义域内不是减函数B若0,则函数(a0,a1)在其定义域内不是减函数C若0,则函数(a0,a1)在其定义域内是减函数D若0,则函数(a0,a1)在其定义域内是减函数8. 已知命题,则 9. 命题“,有”的否定是 10. 若命题“xR,使x2+(a1)x+10”是假命题,则实数a的取值范围为 .11. 命题;命题 是的 条件12. 已知非零向量则是的 条件13. 1是直线和直线垂直的_条件14.设,是定义在R上的函数,则“,均为偶函数”是“为偶函数”的 条件