2023年不等式基本性质教学设计.docx

上传人:w**** 文档编号:68464697 上传时间:2022-12-27 格式:DOCX 页数:28 大小:25.64KB
返回 下载 相关 举报
2023年不等式基本性质教学设计.docx_第1页
第1页 / 共28页
2023年不等式基本性质教学设计.docx_第2页
第2页 / 共28页
点击查看更多>>
资源描述

《2023年不等式基本性质教学设计.docx》由会员分享,可在线阅读,更多相关《2023年不等式基本性质教学设计.docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年不等式基本性质教学设计不等式基本性质教学设计共1基本不等式教学设计基本不等式教材分析本节课是在系统的学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。 要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导

2、者、合作者的作用,引导学生主体参与、揭示本质、经历过程。就知识的应用价值上来看,基本不等式是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法如数形结合、归纳猜想、演绎推理、分析法证明等在各种不等式研究问题中有着广泛的应用;另外它在如“求面积一定,周长最小;周长一定,面积最大”等实际问题的计算中也经常涉及到。就内容的人文价值上来看,基本不等式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体。课程目标分析依据新课程标准对不等式学段的目标要求和学生的实际情况,特确定如下目标:1、知识与能力目标:理解掌

3、握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。2、过程与方法目标:按照创设情景,提出问题 剖析归纳证明 几何解释 应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律基本不等式教学设计的方法,体验成功的乐趣。3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知

4、世界,从而培养学生善于思考、勤于动手的良好品质。教学重、难点分析重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式ab?a?b的证明过程及应用。 2难点:1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);2、利用基本不等式求解实际问题中的最大值和最小值。教法分析本节课采用观察感知抽象归纳探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。以现代信息技术多媒体课件作为教学辅助手段,加深学生对基本不等式的理解。教学准备多媒体课件、板书教学过程教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,

5、符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。 具体过程安排如下:一、创设情景,提出问题;设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实基于此,设置如下情境: 上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,基本不等式教学设计颜色的明暗使它看上去像一个风车,代表中国人民热情好客。 问你能在这个图中找出一些相等关系或不等关系吗?本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式a2?b2?2a

6、b。在此基础上,引导学生认识基本不等式。二、抽象归纳:一般地,对于任意实数a,b,有a2?b2?2ab,当且仅当ab时,等号成立。 问 你能给出它的证明吗?学生在黑板上板书。特别地,当a0,b0时,在不等式a2?b2?2ab中,以a、b分别代替a、b,得到什么?设计依据:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础.答案: ab?a?b(a,b?0)。 2如果a,b都是正数,那么ab?a?b,当且仅当a=b时,等号成立。 2a?b称为a,b的算术平均数,ab称2我们称此不等式为基本不等式。 其中为a,

7、b的几何平均数。三、理解升华:1、文字语言叙述:两个正数的算术平均数不小于它们的几何平均数。2、联想数列的知识理解基本不等式已知a,b是正数,A是a,b的等差中项,G是a,b的正的等比中项,A与G有无确定的大小关系?两个正数的等差中项不小于它们正的等比中项。基本不等式教学设计3、符号语言叙述: 若a?0,b?0,则有ab?a?ba?b,当且仅当a=b时,ab?。 22问 怎样理解“当且仅当”?(学生小组讨论,交流看法,师生总结)“当且仅当a=b时,等号成立”的含义是:当a=b时,取等号,即a?b?ab?a?b; 2仅当a=b时,取等号,即ab?a?b?a?b。24、探究基本不等式证明方法: 问

8、 如何证明基本不等式?(意图在于引领学生从感性认识基本不等式到理性证明,实现从感性认识到理性认识的升华,前面是从几何图形中的面积关系获得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不等式。)2 方法一:作差比较或由(a?b)?0展开证明。方法二:分析法(完成课本填空)设计依据:课本是学生了解世界的窗口和工具,所以,课本必须成为学生赖以学会学习的文本.在教学中要让学生学会认真看书、用心思考,养成讲讲议议、动手动笔、仔细观察、用心体会的好习惯,真正学会读“数学书”。 要证a?b?ab 2只要证a?b? 要证,只要证a?b?0 要证,只要证(?)2?0 显然, 是成立的。当且仅当a=b时

9、, 中的等号成立 。 点评:证明方法叫做分析法,实际上是寻找结论的充分条件,执果索因的一种思维方法.基本不等式教学设计5、探究基本不等式的几何意义:借助初中阶段学生熟知的几何图形,引导学生ab?a?b(a,b?0)2的几何解释,通过数形结合,赋予不等式探究不等式ab?a?b(a,b?0)2几何直观。进一步领悟不等式中等号成立的条件。如图:AB是圆的直径,点C是AB上一点,CDAB,AC=a,CB=b,CDD?ababa?b2abOCAB几何解释实质可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高。四、探究归纳下列命题中正确的是对于任意实

10、数a,b,均有a?b?2ab;当x?0时,由于1?x2?2x,当且仅当1?x2时,即x=1时,等号成立。所以函数y?1?x2(x?0)的最小值为2;44(0,)的最小sinx?4当x?(0,)时,有;所以函数y?sinx?在2sinx2sinx值为4。以上命题均是根据基本不等式的使用条件中的难点和关键处设置的,目的是利用学生原有的平面几何知识,进一步领悟到不等式ab?a?b成立的条件2a?0,b?0,及当且仅当a?b时,等号成立。这些“陷阱”要让学生自己往里跳,然后自己再从中爬出来,完全放手让学生自主探究,老师指导,师生归纳总结。基本不等式教学设计结论:若两正数的乘积为定值,则当且仅当两数相等

11、时,它们的和有最小值; 若两正数的和为定值,则当且仅当两数相等时,它们的乘积有最大值。 简记为:“一正、二定、三相等”。五、领悟练习:公式应用之一:1(1)若x?0,x?的最小值为_,此时x?_.x(1) 若a0,b0,且a+b=2,则ab的最大值为_,此时a=_,b=_。公式应用之二:(最优化问题)设计意图:新颖有趣、简单易懂、贴近生活的问题,不仅极大地增强学生的兴趣,拓宽学生的视野,更重要的是调动学生探究钻研的兴趣,引导学生加强对生活的关注,让学生体会:数学就在我们身边的生活中(1) 在学农期间,生态园中有一块面积为100m2的矩形茶地,为了保护茶叶的健康生长,学校决定用篱笆围起来,问这个

12、矩形的长、宽各为多少时,所用篱笆最短。最短的篱笆是多少?(2)现在学校仓库有一段长为36m的篱笆,要围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大。最大面积是多少?六、反思总结,整合新知:通过本节课的学习你有什么收获?取得了哪些经验教训?还有哪些问题需要请教?设计意图:通过反思、归纳,培养概括能力;帮助学生总结经验教训,巩固知识技能,提高认知水平.老师根据情况完善如下:一个不等式:若a?0,b?0,则有ab?a?b。 2a?b,当且仅当a=b时,2ab?两种思想:数形结合思想、归纳类比思想。基本不等式教学设计三个注意:基本不等式求函数的最大(小)值是注意:“一正二定三相等”七、

13、布置作业:P114习题八、课下思考:类比基本不等式,当a,b,c均为正数,猜想会有怎样的不等式?不等式基本性质教学设计共2基本不等式一、教学设计理念:注重学生自主、合作、探究学习,用新课程理念打造新的教学模式.二、教学设计思路: 1.教学目标确定这节课的目标定位分为三个层面:第一层面:知识与技能层面,了解两个正数的算术平均数和几何平均数的概念;要创设几何和代数两个方面的背景,从数形结合的高度让学生了解基本不等式;引导学生从不同角度去证明基本不等式;用基本不等式来证明一些简单不等式.第二层面:过程与方法,通过掌握公式的结构特点,适当运用公式的变形,能够提高学生分析问题和解决问题的能力,加强学生的

14、实践能力,渗透数学的思想方法.第三层面:情感、态度与价值观,通过具体问题的解决,让学生去感受日常生活中存在大量的不等关系,鼓励学生用数学观点进行归纳,抽象,使学生感受到数学美,走进数学,培养学生严谨的数学学习习惯和良好的思维方式;通过问题的解决,激发学生探究精神和科学态度,同时去感受数学的运用性,体会数学的奥妙,数学的简洁美,激发学生学习数学的兴趣.2.教学过程本节课我设计了五个环节:第一个环节:创设情境,引入新课.我设计了两个情境:一个是天平测量的问题,另一个是让学生动手操作折纸试验,从不同的角度体验和理解基本不等式,让学生能够体会数学与生活紧密联系,激发学生学习兴趣,为后面学习作铺垫.第二

15、个环节:探究交流,发现规律.我在问题的情境中,让学生带着不同的数据去比较几何平均数和算术平均数的大小,并通过小组折纸试验,通过这样合作交流的方式让学生初步感受到几何平均数和算术平均数之间的大小关系.第三个环节:启发引导、形成结论.本节课的重要任务就是对基本不等式进行严格的证明,包括了比较法,综合法和分析法,而学生对作差比较法是比较熟悉的,综合法和分析法的过程要加强引导,并组织学生去探究这两种方法之间的关系,并规范证明过程,为今后学习证明方法打下基础.第四个环节:训练小结,巩固深化.学习基本不等式最终的目的体现在它的运用上,首先在例题选择上,注重让学生充分认识 和 间的关系,给出一般的结论,在练

16、习中我选择了题组形式,目的是与让学生强化对基本不等式成立条件包括等号成立的条件.第五个环节:研究拓展,提高能力.我设计了一道关于例题的变式题,目的是让学生感受到,通过适当的变形将其化为例题中出现的形式,体现化归的思想,最后设计三道思考题,两道进一步巩固化归思想及应用基本不等式的条件,一道需要分类讨论,让学有余力的学生提供更好展示自己能力的机会,得到进一步提高.最后我通过问题式的小结,让学生自行归纳我们这节课当中学到的知识,特别是最后一问中,让学生去总结在使用基本不等式的时候要注意哪些条件.虽然我没有点出“一正二定三相等”这样的结论,但已潜移默化为我们下一节课使用基本不等式求最值问题作了铺垫,起

17、到承前启后的作用.三、本节课重点重点:应用数形结合的思想和日常生活中例子理解基本不等式,并从不同的角度探索不等式的证明过程.难点:灵活使用化归思想把问题转化为运用基本不等式,以及基本不等式成立条件中包括等号成立的条件.在这一节中的主要任务就是让学生从不同的角度去探索基本不等式的证明过程,包括它的成立条件,在这一节课中我的总体想法是通过互动,发现规律,直接猜想,指定验证,得出结论,最后灵活运用这个结论来解决问题.四、本节课亮点:1.积极引导学生自主探究问题,解决问题.2.灵活运用转化与化归的思想.3.实现课堂三大转变:变教学生学会知识为指导学生会学知识;变重视结论的记忆为重视学生获取结论的体验和

18、感悟; 变模仿式学习为探究式学习.4.课堂小结采取问题式小结给学生留下满口香.导入新课探究:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗??(教师用投影仪给出第24届国际数学家大会的会标,并介绍此会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.通过直观情景导入有利于吸引学生的注意力,激发学生的学习热情,并增强学生的爱国主义热情)? 推进新课师 同学们能在这个图中找出一些相等关系或不等关系吗?如何找??:一、

19、知识与技能1.能够运用基本不等式解决生活中的应用问题 2.进一步掌握用基本不等式求函数的最值问题;3.审清题意,综合运用函数关系、不等式知识解决一些实际问题 4.能综合运用函数关系,不等式知识解决一些实际问题二、过程与方法本节课是基本不等式应用举例的延伸。整堂课要围绕如何引导学生分析题意、设未知量、找出数量关系进行求解这个中心。三、情感、态度与价值观1.引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。2.进一步培养学生学习数学、应用数学的意识以及思维的创新性和深刻性:一、知识与技能1.探索并了解基本不等式的证明过程,体会证明不等式的基本思想方

20、法; 2.会用基本不等式解决简单的最大(小)值问题;3.学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号取等号的条件是:当且仅当这两个数相等;4.理解两个正数的算术平均数不小于它们的几何平均数的证明以及它的几何解释;二、过程与方法1.通过实例探究抽象基本不等式;2.本节学习是学生对不等式认知的一次飞跃。要善于引导学生从数和形两方面深入地探究不等式的证明,从而进一步突破难点。变式练习的设计可加深学生对定理的理解,并为以后实际问题的研究奠定基础。两个定理的证明要注重严密性,老师要帮助学生分析每一步的理论依据,培养学生良好的数学品质三、情感、态度与价值观1.通过本节的学习

21、,体会数学来源于生活,提高学习数学的兴趣2.培养学生举一反三的逻辑推理能力,并通过不等式的几何解释,丰富学生数形结合的想象力、知识结构解读1教材对基本不等式 的推导给出了三种证法,即作差法、分析法和综合法,同时引导同学们探讨基本不等式的几何解释2基本不等式主要应用于求某些函数的最值及证明不等式应用基本不等式时一定要注意其成立的条件基本不等式的应用过程蕴涵了函数思想、方程思想、数形结合思想、分类讨论思想及化归与转化等数学思想二、重点、难点解读本节的重点内容是掌握两个正数的算术平均数不小于它们的几何平均数;掌握两个正数的和为定值时积有最大值,积为定值时和有最小值的结论 难点是正确理解和使用基本不等

22、式求某些函数的最值或证明不等式三、知识点精析1基本不等式的定义(详见课本)基本不等式可表述为:两个正实数的几何平均数小于或等于它们的算术平均数 注意:不等式 成立的条件是 2基本不等式的几何证明已知在 中,如右图所示, 为斜边 上的高, 为 的外接圆的圆心, 的延长线交 于点 , ,证明: 一、教学目标1知识与技能探究基本不等式的证明过程,初步理解基本不等式2过程与方法通过对基本不等式的不同角度的探究,渗透数形结合及转化的数学思想3情感、态度与价值观:通过本节学习,激发学生学习和应用数学知识的兴趣,形成积极探索的学习风气二、教学重点 用数形结合的思想理解基本不等式,并从不同角度探索不等式 的证

23、明过程教学难点 对基本不等式 的探究三、教学资源 普通高中数学课程标准(实验) 人教A版教材必修5中学数学周刊2005年第10期 百度四、教学方法与手段启发学生探究,多媒体辅助教学五、教学过程(一)创设情境:如图1是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表着中国人民的热情好客你能在这个图中找出一些相等关系或不等关系吗?设计意图:创设问题情境,为问题的引出做铺垫(二)新知探究: 图1将风车抽象成图2设直角三角形的两条边长为a、b,那么正方形 的边长为 .这样,4个直角三角形的面积和为2ab,正方形面积为 .由于4个直

24、角三角形的面积和小于正方形ABCD的 面积,我们就得到了一个不等式当直角三角形变为等腰直角三角形, 图2即 时,正方形EFGH缩为一个点,这时有此时,a、b代表正方形的边长,显然是正数,如果我们推广到一般情况,对于任意的实数知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“”取等号的条件是:当且仅当这两个数相等;2过程与方法:通过实例探究抽象基本不等式;3情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣应用数形结合的思想理解不等式,并从不同角度探索不等式 的证明过程;基本不等式 等号成立条件1.课题导入基本不等式 的几何背景:如图是在北

25、京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗?教师引导学生从面积的关系去找相等关系或不等关系2.讲授新课1探究图形中的不等关系将图中的“风车”抽象成如图,在正方形ABCD中右个全等的直角三角形。设直角三角形的两条直角边长为a,b那么正方形的边长为 。这样,4个直角三角形的面积的和是2ab,正方形的面积为 。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式: 。当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有 。2得到结

26、论:一般的,如果3思考证明:你能给出它的证明吗?证明:因为当所以, ,即41)从几何图形的面积关系认识基本不等式特别的,如果a0,b0,我们用分别代替a、b ,可得 ,通常我们把上式写作:2)从不等式的性质推导基本不等式用分析法证明:要证 (1)只要证 a+b (2)要证(2),只要证 a+b- 0 (3)要证(3),只要证 ( - ) (4)显然,(4)是成立的。当且仅当a=b时,(4)中的等号成立。3)理解基本不等式 的几何意义探究:课本第110页的基本不等式说课稿一、教材分析1、本节课的地位、作用和意义基本不等式又称为均值不等式,选自普遍高中课程标准实验教科书(北京师范大学出版社出版)

27、必修5 ,第3章第3节内容。学生在初中学习了完全平方公式、圆、初步认识了不等式,同时,在本章前面两节学习了比较大小、一元二次不等式等,这些给本节课提供了坚实的基础;基本不等式是后面基本不等式与最大(小)值的基础,在高中数学中有着比较重要的地位,在工业生产等有比较广的实际应用。2、本节课的教学重点和难点我通过解读新课标和分析教材,认为:重点:通过对新课程标准的解读,教材内容的解析,我认为结果固然重要,但数学学习过程更重要,它有利于培养学生的数学思维和探究能力,所以均值不等式的推导是本节课的重点之一;再者,均值不等式有比较广的应用,需重点掌握,而掌握均值不等式,关键是对不等式成立条件的准确理解,因

28、此,均值不等式以及其成立的条件也是教学重点。突出重点的方法:我将采用用分组讨论,多媒体展示、引导启发法来突出均值不等式的推导;用重复法(在课堂的每一环节,以各种方式进行强调均值不等式和其成立的条件),变式教学来突出均值不等式及其成立的条件。难点:很多同学对均值不等式成立的条件的认识不深刻,在应用时候常常出错误,所以,均值不等式成立的条件是本节课的难点。突破难点的方法:我将采用用重复法(在课堂的每一环节,以各种方式进行强调均值不等式和其成立的条件),变式教学等等来突破均值不等式成立的条件这个难点。二、教学目标分析1、知识与技能目标(1)学会推导基本不等式: 。(2)理解 的几何意义。(3)能3分

29、钟内写出基本不等式,并说明其成立的条件,准确率为95%2、过程方法与能力目标(1)探索并了解均值不等式的证明过程。(2)体会均值不等式的证明方法。3、情感、态度、价值观目标(1)通过探索均值不等式的证明过程,培养探索、研究精神。(2)通过对均值不等式成立的条件的分析,养成严谨的科学态度,勇于提出问题、分析问题的习惯。 “探究” 基本不等式的证明(1):一、知识与技能1.探索并了解基本不等式的证明过程,体会证明不等式的基本思想方法;2.会用基本不等式解决简单的最大(小)值问题;3.学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“”取等号的条件是:当且仅当这两个数相等

30、;4.理解两个正数的算术平均数不小于它们的几何平均数的证明以及它的几何解释;二、过程与方法1.通过实例探究抽象基本不等式;2.本节学习是学生对不等式认知的一次飞跃。要善于引导学生从数和形两方面深入地探究不等式的证明,从而进一步突破难点。变式练习的设计可加深学生对定理的理解,并为以后实际问题的研究奠定基础。两个定理的证明要注重严密性,老师要帮助学生分析每一步的理论依据,培养学生良好的数学品质三、情感、态度与价值观1.通过本节的学习,体会数学来源于生活,提高学习数学的兴趣2.培养学生举一反三的逻辑推理能力,并通过不等式的几何解释,丰富学生数形结合的想象力:重点:应用数形结合的思想理解不等式,并从不

31、同角度探索不等式 的证明过程;难点:理解基本不等式 等号成立条件及 “当且仅当 时取等号”的数学内涵:1.学法:先让学生观察常见的图形,通过面积的直观比较抽象出基本不等式。从生活中实际问题还原出数学本质,可积极调动地学生的学习热情。定理的证明要留给学生充分的思考空间,让他们自主探究,通过类比得到答案2.教学用具:直角板、圆规、投影仪(多媒体教室):新授课:1课时:一、创设情景,揭示课题1.提问: 与 哪个大?2.基本不等式 的几何背景:如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中

32、找出一些相等关系或不等关系吗?(教师引导学生从面积的关系去找相等关系或不等关系)。二、研探新知重要不等式 :一般地,对于任意实数、,我们有 ,当且仅当 时,等号成立。证明:所以不等式基本性质教学设计共3基本不等式教学设计 数学与应用数学 钟林 课题:人教A版必修5第3章4节,基本不等式1.通过两个探究实例,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景,体会数形结合的思想。2.进一步提炼、完善基本不等式,并从代数角度给出不等式的证明,组织学生分析证明方法,加深对基本不等式的认识,提高逻辑推理论证能力。 3.结合课本的探究图形,引导学生进一步探究基本不等式的几何解释,强化数形结

33、合的思想。4.借助例1尝试用基本不等式解决简单的最值问题,通过例2及其变式引导学生a?b领会运用基本不等式ab?的三个限制条件(一正二定三相等)在解决最2值中的作用,提升解决问题的能力,体会方法与策略。重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式a?bab?的证明过程。2难点:在几何背景下抽象出基本不等式,并理解基本不等式。(一)问题导入欣赏2002年国际数学家大会会徽,会徽是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能发现它是什么图形构成的吗?请根据会徽探索一些常见相等或不等关系。探究一:在这张“弦图”中能找出一些相等关系和

34、不等关系吗? 在正方形ABCD中有4个全等的直角三角形设直角三角形两条直角边长为,a,b。22a?b那么正方形的边长为。于是,4个直角三角形的面积之和S1?2ab。 正方形的面积S2?a2?b2。 由图可知S2?S1,即a2?b2?2ab。当直角三角形变为等腰直角三角形,即时,正方形EFGH缩为一个点,这时 a2?b2?2ab所以a2?b2?2ab。探究二:如下图所示的梯形中,EF是梯形ABCD的中位线,梯形ABGH相似于梯 形GHDC。梯形ABCD的上底是a,下底是b。让同学们自主研究GH和EF的大小关系。a?b因为EF是中位线,所以EF?,2由相似,可以得出GH?ab, 同样因为相似,有a

35、GABa, ?GDGHb又因为a?b,所以AG?GD,即AG?AE,a?b。 2显然,当AB逐渐趋近CD的时候,GH也逐渐向EF靠近, 当AB=CD的时候,即ABCD是矩形的时候,GH与EF重合。a?b即,当且仅当a?b时,ab?。2a?b所以,ab?,当且仅当a?b时,等号成立。2所以GH?EF,即ab?(二)概念深入根据上述两个几何背景,初步形成不等式结论:若a,b?R?,则a2?b2?2ab。(当且仅当a=b时,等号成立)a?b。(当且仅当a=b时,等号成立) 2请同学们运用代数法证明: 作法一(作差法): 若a,b?R?,则ab?a2?b2?2ab?(a?b)2?0a?b?2ab22当

36、且仅当a=b时,等号成立。且发现这里且a和b可以是全体实数、单项式、多项式。作法二(分析法):要证明a?b?ab, 2只需证明a?b?2ab, 即证a?b-2ab?0, 即为?a-b?2?0,该式显然成立,所以,当a?b时取等号。于是有这样的结论:称ab为a,b的几何平均数;称基本不等式ab?a?b为a,b的算术平均数, 2a?b又可叙述为: 2两个正数的几何平均数不大于它们的算术平均数作法三(几何法):如图,AB是圆O的直径,点C是AB上一点,AC=a,BC=b过点C作 垂直于AB的弦DE,连接AD,BD。 从而有CD?ab,OD?a?b。 2a?b。 2a?b当且仅当C点与圆心O点重合时,

37、即a=b时,ab?2故再次证明:a?ba?0,b?0,ab?,当且仅当a=b时,等号成立。2a?b也说明了ab?的几何意义:半径不小于半弦。2由于直角三角形COD中,直角边CD(三)例题讲解例1.(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?(2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?(通过例1的讲解,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化)对于x,y?R?,(1)若xy?p(定值),则当且仅当x?y时,x?y有最小值2p;s2(2)若x?y?s(定值)

38、,则当且仅当x?y时,xy有最大值。4(鼓励学生自己探索推导,不但可使他们加深基本不等式的理解,还锻炼了他们的思维,培养了勇于探索的精神。)1例2.求y?x?(x?0)的值域。x1变式1.若x?2,求x?的最小值x?21在运用基本不等式解题的基础上,利用几何画板展示y?x?(x?0)的函数x图象,使学生再次感受数形结合的数学思想。a?b并通过例2及其变式引导学生领会运用基本不等式ab?的三个限制2条件(一正二定三相等)在解决最值问题中的作用,提升解决问题的能力,体会方法与策略。(四)归纳小结&课后作业 基本不等式:若a,b?R?,则a2?b2?2ab。(当且仅当a=b时,等号成立)a?b。(当且仅当a=b时,等号成立) 2(1)基本不等式的几何解释(数形结合思想); (2)运用基本不等式解决简单最值问题的基本方法。作业:A组第4题,B组第1题,第2题若a,b?R?,则ab?

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁