《自动化考研现控部分习题解答.docx》由会员分享,可在线阅读,更多相关《自动化考研现控部分习题解答.docx(42页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、自动化考研现控部分习题解答.txtl8拥有诚实,就舍弃了虚伪;拥有诚实,就舍弃了无聊; 拥有踏实,就舍弃了浮躁,不论是有意的丢弃,还是意外的失去,只要曾经真实拥有,在 些时候,大度舍弃也是种境界。本文由victory0702贡献doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 现代控制理论习题详解 victory 上传第一章控制系统的状态空间描述3-1-1求图示网络的状态空间表达式,选取u c和i L为状态变量。(1)R1 ui Cl uclR2 il u C 2 i2 u o c2 题3-1-1图1 (2) R uiiL L C uc uo 题3-1-1图
2、2【解】:(1)设状态变量:xl = u cl x2 = uc2而il 二 Clucl、 i 2 = C 2 u c 2根据基尔霍夫定律得: u i = Cl u cl + ( u cl u c 2 )R1 + u cl R2 ucl=C2uc2R2 + uc2 整理得1 RI + R 2 1 & xl RI R 2 Cl R 2 Cl xl + R1C1 u i = x 1 1 x2 &2 0 R2 C 2 R2 C 2 xl y = u 0 = 0 1 x2(2)设状态变量:xl = i L x2=uc而Page 1 of 84现代控制理论习题详解victory 上传iL = C uc根据
3、基尔霍夫定律得:ui = R iL + L iL + uc整理得R&xlLx=l42CllLxl+uLi0x20xy=u0=01 1 x23-1-2如图所示电枢电压控制的它励直流电动机,输入为电枢电压u a输出为电动机角速度3,电动机轴上阻尼系数为f转动惯量J试列写状态方程和输出方程。 Ra ua La iai f二常数 f D J MLG)题3-1-2图【解】:设状态变量为: xl ia = x 2 3其中i a为流过电感上的电流,3电动机轴上的角速度。电动机电枢回路的电压方 程为:ua = Laia + Raia + ebeb为电动机反电势。 电动机力矩平衡方程为 M D = J 3 +
4、f 0 + M L 由电磁力矩和反电势的关系,有 eb = c , M D = c M i a式中ce为电动机反电势系数,cM为电动机的转矩系数。J为电动机轴上粘性摩擦 系数,f电动机轴上等效转动惯量。整理得Page 2 of 84现代控制理论习题详解 victory 上传Ra & xl L a = x &2 cM Jce 1 xl L La + a f x2 0 J x y = w = 01 1 x2 0 ua 1 M L J(注:解是非唯一的)3-1-3试求图示系统的模拟结构图,并建立状态空间表达式。(1) U (s )KI Tls + 1 K2 T2 s + 1 K3 s 1 T4 s
5、+ 1 Y (s) 1 sK5 T5 s + 1题3-1-3图1 (2)UI ( s) c s+a 1 s Yl ( s ) U 2 (s) d s+b f s+eY2 ( s)g题3-1-3图2【解】:(1)如题3-1-3图3设状态变量Page 3 of 84现代控制理论习题详解 U (s ) victory 上传 x6 KI T1 & x6 K2 T2 & x4 1 T2 x4 K3 & x2 x2 1 T4 & xl 1 T4 xl Y (s ) 1 T1 x3 & x3 x5 & x5 K5 T5 1 T5 题3-1-3图3 & xl =1 1 xl + x2 T4 T4& x 2 =
6、 K 3 ( x 4 x3 ) & x3 = x2 & x4 = K K 1 x 4 2 x5 + 2 x 6 T2 T2 T2 K5 1 x2 x5 T5 T5& x5 = & x6 =K 1 x 6 + 1 (u xl ) T1 T1 y = xl 写成矩阵的形式得:1 100TT440K3K300100100&x=0T2K5000T5K1000Tly= 1 0 0 0 0 0x 0 0 0 K2 T2 1 T5 0 0 0 0 0 0 0 K2 X + u T2 0 0 0 K 1 T1 1 T1(2)如图题3-1-3图4设状态变量Page 4 of 84现代控制理论习题详解 victo
7、ry 上传 ulc & x2 x2 xl yi a u2 d & x4 x4 f & x3 & x3 x3 y2 be g题3-1-3图4&xl = x2&x2 = ax2 + c(ul x4) & x3 = ex3 + fx4&x4 = bx4 + dx2 dgx 3 + du 2 yl = xl y 2 = x3 y = xl写成矩阵的形式得:000010a0ccx + &x=00ef00ddgb01000 y=x001000u0 d(注:此题解并非唯一的)3-1-4已知系统的微分方程,试将其转变成状态空间表达式。 & & &y& + 2 & + 4 y + 6y = 2u y & & (
8、2) &y& + 7 & + 3y = u + 2u y & & & & (3) &y& + 5& + 4y + 7y = u + 3u + 2uy& (4) y ( 4) + 3& + 2y = 3u + uy 【解】:Page 5 of 84现代控制理论习题详解victory 上传在零初始条件下,方程两边拉氏变换,得到传递函数,再根据传递函数求状态空间表达 式。此题多解,-般写成能控标准型、能观标准型或对角标准型,以下解法供参考。(1) 传递函数为:G (s) = 2 s + 2s + 4s + 63 2状态空间表达式为:1000&x=001x+0u6421y=200x (2)传递函数为:
9、G (s) = s+2 s + 7s + 3 3 2 s+2 s+7s2+0s+3 3状态空间表达式为:0100& = 001x + 0ux3071y=2 10x(3)传递函数为:G (s) = s2 + 3s + 22s + 5s + 4s + 73状态空间表达式为:1000x+0u&=0x017451y=231x(4)传递函数为:G (s) =3s+13s+l=4223s+3s+2s+0s+3s+0s+2 4状态空间表达式为:010000010x+0u&x=0001020301y=1300xPage 6 of 84现代控制理论习题详解victory 上传3-1-5已知系统的传递函数,试建立
10、其状态空间表达式,并画出结构图。(1) G (s) =(3) G ( s )=s2 + s +1 s 2 + 3s + 1 (2) G(s)=22s + 5s + 6s 3 + 6s + 1 Is + +6 4 s (s + 1) 2 ( s + 3)4 4) G ( s )=s2+2s+32s3+3s+3s+l【解】:此题多解,一般可以写成能控标准型、能观标准型或对角标准型,以下解法 供参考。(1)10000x+0u&x-0161161y=lllx结构图如图题3-1-5图1所示U& x3x3& x2& x3 x2& xlxl y6116题3-1-5图1(2) G ( s)=s + 3s +
11、ls + 5s + 62s5 2s + 5 = =1222s + 5s + 6s + 5s + 6s + 5s + 62 2100&x=x + lu65y=5 2+u结构图如图题3-1-5图2 (a)所示Page 7 of 84现代控制理论习题详解 victory 上传2 u& x2& x3 x2& xlxly55 6题 3-1-5 图 2(a)或有G(s)=s2+ 3s +111=1 s+2 s+3 s 2 + 5s + 6201&x=x+lu03y=l lx + u 结构图如图题3-1-5图2 (b)所示u& xl2 xly& x2 x23题 3-1-5 图 2(b)3 3)G (s) =
12、 4 s ( s + 1) 2 ( s + 3)413 + 2 + lG(s)=3 + s(s + 3) ( s + 1) 2 ( s + 1)Page 8 of 84现代控制理论习题详解victory 上传00036 x= 000014 y= 33010x + lu0110110021x结构图如图题3-1-5图3所示u& xl xl4 36 x2x21 33y& x4x4& x3 x3 2题3-1-5图3 (4)G (s)= s2+2s+32s3+3s+3s+l1 0 0 0 & x=0 0 1 x + 0 u 1 3 3 1 y = 3 2 lx结构图如图题3-1-5图4所示Page 9
13、of 84现代控制理论习题详解 victory 上传2 u& x3 x3 & x2& x3 x2& xl xl33 3y题3-1-5图43-1-6将下列状态方程化成对角标准型。& (1) x = 100x + u561100233x+15u& (2) x = 02 12 7671010101x + lu6 1160 & (3) x = 0【解】:(1)特征方程为:D(X ) = X 2 + 6X + 5 = (X + 1) (X + 5) = 0 特征值为:X 1 = 1, X 2 = 5系统矩阵A为友矩阵,且特征值互异,因此可以化为对角标准型,其变换矩阵P为范 德蒙矩阵。变换阵:1 1 1
14、1 1 5 1 P= = , P = 0. 25 1 1 X 1 X2 1 5线性变换后的状态方程为:1 0 0. 25 & X = ( P 1 AP) x + ( P lb) u = X + u 0 5 0. 25(2)特征方程为:Page 10 of 84现代控制理论习题详解victory 上传X XI A = 3 127 0 2=入 3 + 6 入 2 + 11 X + 6 = (X + 1)(X + 2) (X + 3) = 0 X +6 特征值为: X 1 = 1, X 2 = 2, X 3 = 3 , 设变换阵:P= P21 P31 PH P12 P22 P32 P13 P23 P
15、33 由(X i I A) Pi = 0 得1 1 0 Pll Pl13 12P = 0 取 P = P =当 X 1 = 1 时,1 21 21127P315 P31 1 1 12 10Pl2 Pl2 2 3 2 2 P = 0 取 P = P = 4 当 X 2 = 2 时,2 22 22 12 7 P32 1 4 P32 3 1 0 P13 Pl3 1 3 3 2 P = 0 取 P = P = 3 当 X 3 = 3 时,3 23 23 12 7 P33 3 3 P33变换阵:2114.52.51143, P1=321P=1 12.51.513 线性变换后的状态方程为: 0 1 0 1
16、8.5 27 4 = 0 2 0 x + 15 20u x 0 13. 5 16 0 3(3)特征方程为:D(X ) = X3 + 6X 2 + 11 X + 6 = (X + 1)(X + 2) (X + 3) = 0 特征值为: X 1 = 1, X 2 = 2, X 3 = 3 Page 11 of 84 现代控制理论习题详解 victory 上传 系统矩阵A为友矩阵,且特征值互异,因此可以化为对角标准型,其变换矩阵P为: 1 P = X 1 2 X 1 1 X2 X2 2 1111 = 123 X32 X3149 P 1 3 2. 5 0.5 = 3 4 1 1 1.5 0.5 线性变
17、换后的状态空间表达式为: 0 1 0 5. 5& = 020x + 7ux0 2. 503 3-1-7将下列状态方程化成约旦标准型。 & (1) x = 210x + ul211 & (2) x = 1 2312x + 27ull35340 0100001x + 0u& (3) x = 2 5 4 1 【解】:(1)特征方程为: X I A = X +2 1 1 X+2 =X 2 + 4 X + 3 = (X + 1) (X + 3) = 0 特征值为: X 1 = 1, X 2 = 3 设变换阵:P =Pll P21 P12 P22由(入 i I A) Pi = 0 得:Page 12 of
18、 84现代控制理论习题详解victory 上传当人1 = 1时,1 1 1 Pll P = 0 取 P1 = 1 1 1 21 1 1 1 Pl2 P = 0 取 P2 = 1 1 1 22当X 2 = 3时,1 1 0. 5 0. 5 1 P= , P = 1 1 0. 5 0. 5线性变换后的状态空间表达式为:1 0 0. 5 & x = ( P 1 AP) X + (Plb)u = x + u03 0. 5(2)特征方程为:X 4 1 X I A = 1 X1 122=(X1)(X3)2 = OX3特征值为:X 1 = X 2 = 3, X3 = 1 设变换阵:Pll P = P21 P
19、31 P12 P22 P32 P13 P23 P33当X 11 12 P11 1 1 3 2 P = 0 ,取P= 1 = 3时,由(X1 IA)P1=0得:1 211 110 P31 11 2 P12 1 1 3 2 P22 = 1,JU P2 =0 11 0 0P321当X 2 = 3 时,由(X 2 I A)P2 = Pl得:13 12 P13 0 1 1 2 P = 0 .取P= 2 当 X3=l 时,由(X3IA)P3=0 得:3 231 1 2 P33 1变换阵:Page 13 of 84现代控制理论习题详解victory 上传110012102, P1=112P= 101011线
20、性变换后的状态空间表达式为:31081& = 030x + 52ux00134(3)特征方程为:D (X ) = X3 4X 2 + 5X 2 = (X 1) 2 (X 2)=0。特征值为:X 1 = X 2 = 1, X 3 = 2 且特征值有重根,因此可以化为约当标准型,其变换矩阵P为:系统矩阵A为友矩 阵,P = Pl P2 dPl P3 = Pl M M P3 dX 1110 0 11 X = 1 , P = 1 = 1 , P=X=2P1 = 13232 X112X12 X2 4 3变换阵:211010112, P1=231P= 124121线性变换后的状态空间表达式为:1 101&
21、=010x+lux00213-1-801121030x + l&已知状态空间表达式,x = 4u01423Page 14 of 84现代控制理论习题详解victory 上传1 0 0 1 = P 1 x进行线性变换,(1)试用x变换矩阵P = 0 2 0求变换后的状 态空间表达式。0 1(2)试证明变换前后系统的特征值的不变性和传递函数矩阵的不变性。【解】:(1) =Plxxx=Px20.50 1A = PAP = 03000.541 1 1 B=P B=2 8 2 3 2 0 . 5 0 1 1 = 030 + 2& xx8u00.5423(2)证明:变换后的系统矩阵为A = P 1 AP
22、输入矩阵为B = P 1 B特征值的不变 性:si P 1 AP = sP 1 P P 1 AP = P 1 si A P = si A r传递函数矩阵的不变性:G ( s ) = CP ( si P 1 AP ) 1 P 1 B = CP ( sP 1 P P 1 AP) 1 P 1 B = CP P 1 ( si A) P 1 P 1 B = CPP 1 ( si A) 1 PP 1 B = C ( si A) 1 B验证:变换前的特征方程为:DI (X ) = (X + 2) (X + 3) (X + 4) = 0变换后的特征方程为:D 2 (X ) = (X + 2) (X + 3)
23、(X + 4) = 0 DI (X ) = D 2 (X )所以变换前后系统的特征值是不变的。3-1-9已知两个子系统的传递函数矩阵分别为Page 15 of 84现代控制理论习题详解victory 上传1 Gl ( s ) = s + 1 01 1 s + 2 , G(s)=s + 3121ss+l1 s + 1 .试求两子系统串联后和并联后的传递函数0矩阵。【解】:(1)串联Gl ( s )在前,G 2 ( s )在后时1 G ( s ) = G 2 ( s )G1 (s)=s + 31s+lG2(s)在前,Gl ( s )在后时 lls + ls + 10011(s + l)(s + 3
24、)s+2 = lls(s + l)2 2s2 + 6s + 6s(s + 1) (s + 2) ( s + 3) 1 ( s + 1) ( s + 2)1 G ( s ) = Gl (s)G2(s)=s + 10lls + 2s + 311ss + l2s + 5 1 ( s + 1) (s + 2) (s + 3) s +1 = 1 0 s ( s + 1) 12s + 4s + l = (s + l)(s + 3) 1 0 ( s + 1)(s + 1) 012(2)并联1 G ( s ) = Gl (s)+G2(s)=s+101 ls + 2 + s + 31 1 s s +1 2s +
25、 3 ( s + 1) (s + 2) 1 s3-1-10已知离散系统的差分方程为y (k + 3) + 3 y (k + 2) + 5 y (k + 1) + y (k )=u (k + 1) + 2u (k ),求系统的状态空间表达式,并画出系统结构图。【解】:根据 差分方程,在零初始条件下,方程两边Z变换,得到系统的脉冲传递函数为G( z ) = z+2 z + 3z2 + 5z + l31000 x(k+l)=001x(k)+0u(k) 1 5 3 1 y (k ) = 2 1 Ox(k ) 其结构图如图题3-1-10图所示: Page 16 of 84现代控制理论习题详解 victo
26、ry 上传 u Z 1 3 x3 ( k ) & x3 z 1 x2 (k ) z 1 xl ( k ) 2 y 5题3-1-10图3-1-11!已知离散系统的状态空间表达式为1 u (k ) , = + x 2 (k + 1) 1 3 x 2 (k ) 1 x (k + 1) 0 1 x (k ) 0x (k ) y (k ) = 1 1 1 ,求系统的脉冲传递函数。x 2 (k ) 【解】:W ( z ) = C ( zl G ) 1 H1 0 z = 1 1 1 z 3 1=llz310zlz3zllz+l=2z3zll21也可以直接写出。3-1-12已知系统的脉冲传递函数,试求系统的状
27、态空间表达式。(1) G ( z ) = (2) G ( z )=2z2+z+2z3+6z2+llz+61z3+4z2+5z+2【解】:此题多解,一般可以写成能控标准型、能观标准型或对角标准型,以下解法 供参考。(1)Page 17 of 84现代控制理论习题详解victory 上传10000x(k)+0u(k)x(k+l)二 016 116 ly(k)=2 1 2x(k ) (2)10000x(k)+0u(k)x(k+l)=012541y(k) = 10 0x(k ) 第二章状态空间表达式的解3-2-!试求下列矩阵A对应的状态转移矩阵(t) (1) 0 1 A= (2) 0 2 1 0 A=
28、 (4) 1 2 0 1 A= 4 0(3)010A = 0012540 0 (5) A = 0 0100 X 000010 (6) A = 0X 1000X 1001000000X 【解】:(1)1 1 s 1 1 s O (t ) = L (si A) = L = L 0 0 s + 21 1 1Is ( s + 2) 1 ( s + 2)1 s = LI 00. 5 0 . 5 2t s ( s + 2) 1 0. 5 0. 5e = 1 e 2t 0 ( s + 2) (2)s 1 s 1 1 s 2 + 4 O (t ) = L ( si A) = L = L 4 4 s s2 +
29、41 1 1s + 4 = cos 2t s 2 sin 2t s2 + 4 120.5 sin 2t cos 2tPage 18 of 84现代控制理论习题详解victory 上传3 3)s+2 1 s 1 ( s + 1) 2 O(t ) = LI ( si A) 1 = Li = LI 1 1 s + 2 ( s + 1) 2(s + l)s(s + l)212te t + e t 中(t) = t tete t e t te t(4)特征值为:XI = X 2 = 1, X3 = 2 由习题3-1-7(3)得将A阵化成约当 标准型的变换阵P为211010112, P1=231P= 12
30、1124线性变换后的系统矩阵为:1 10A = P1AP = 010002 e t =0 0 te t et e At000e2t0et00021tte231etl21e 2t te t e t 2e 2t te t 2e t 4e 2t te t 3e t(t ) = eAt=Pe P At12tl01ell20=1240e 2t 2te t 中(t ) = 2e 2t 2te t 2e t 4e 2t 2te t 4e t2e 2t + 3te t + 2e t 4e 2t + 3te t + 5e t 8e 2t + 3te t + 8e t (5)为结构四重根的约旦标准型。入1二入2二
31、入3二入4二0Page 19 of 84现代控制理论习题详解victory 上传 中(t ) = e At1 t = e X t 0 1 0 0 0 01 2 t 2! t 1 013tlt3!12t=012!t001001 2 t 2 t 1 01 3 t 6 1 2 t 2 t 1(6)X 1 = X 2 = X 3 = X 4 = X虽然特征值相同,但对应着两个约当块。e Alt (t) =eAt=00e A2tAl = X e Alt = e X tX t e X 1 0 0 X 1 e A2t = 0 A2 = 0 0 0 X e Xt0 = 000e Xt te X t e X t
32、 0 1 2 X t t e 2 te X t e X t0 teX t(t ) = e At0 0e X t 000 12 X t t e 2 te X t e X t0 1 sX 000 1 s X1s X 或(t )= LI ( si A) 1 = LI 0 0 sX 0 01 s + X 0 1 =L 0 00 1 s+X 0 001(s+X)21s+X0l(s+X)312(s+X)ls+X0Page 20 of 84现代控制理论习题详解victory 上传e X t 0 = 000 e0 teAt0 0e入t 00 12 X t t e 2 te 入 te 入 t3-2-2已知系统的
33、状态方程和初始条件1001&x = 010x, x (0 ) = 0 0 1 2 1(1)用laplace法求状态转移矩阵:(2)用化标准型法求状态转移矩阵;(3)用 化有限项法求状态转移矩阵;(4)求齐次状态方程的解。【解】:(1)(t ) = LI ( si A) 10sl01 = L0sl001s211 ( s 1) 1 =L 0 00 1 ( s 1) 1 1 ( s 1) ( s 2)t e 0 -0 1 0 ( s 2) 00 et e t + e 2t0 0 e 2t(2)特征方程为:入1 0入I A = 0入10 100 二(入 1) 2(入 2)= 0 入2特征值为:X 1
34、= X 2 = 1, X 3 = 2 0 0 0 rank (XI I A) = rank 000 = nl = 101 1Page 21 of 84现代控制理论习题详解victory 上传0 0 0 rank (XI I A) = rank 000 = n2 = 101 12由于n2 = nl = 1 ,所以X!对应的广义特征向量的阶数为1求满足(XI I A) P1 =0的解P1 I得:0 P11 0 0 1 0 0 0 P21 = 0 , P1 = 0 0 1 1 P31 0再根据(X 2 I A) P2 = 0 ,且保证Pl、P2线性无关,解得:P2 = 0 1 1T对于当X3 = 2
35、的特征向量,由(X3 I A) P3 = 0容易求得:P3 = 0 0 1T所以变换阵为:P = P1P2100100 P3=010, Pl=010011011线性变换后的系统矩阵为:1OO1A=PAP =010002e t =0 0 0 et e “ At 0 0 0 e 2t 0 e t t (t )= e At e t = P 0 0 0 e t 0 et010P=00e2t e + e 2t 0 0 e 2t(3)特征值为:X 1 = X 2 = 1, X 3 = 2 2 e X It = a0 + al X1 + a 2 X 1Page 22 of 84现代控制理论习题详解victo
36、ry 上传te X It = al + 2a 2 X1e X3t = aO + alX3 + a2 X 2 3即a 0 1 X 1 a = 0 1 1 a 2 1 X 32 X1 2X 1 X2 311e X It X It te e X 3t 111 = 012124 et t te e 2 t t 0 2 1 e t =2 3 2 te 1 1 1 e 2t 2te t + e 2t = 2e t + 3te t2e2tettet+e2teAt=aOI+alA+a2A 2et = 000e t t e + e 2t 0 0 e 2t (4)e t x(t ) = O (t) x(0) =
37、000 etet + e2t01et00 = 0e2tle2t 3-2-3试判断下列矩阵是否满足状态转移矩阵的条件,如果满足,试求对应的矩阵Ao0 0 1 2t 0 sin t cos t (2)(t )=1 0.5(1 e) (1) O (t ) = e 2t 0 0 cos t sin tPage 23 of 84现代控制理论习题详解victory 上传(3) O(t )=【解】:(1)2e t e 2t t 2t e e0. 5e t + 0. 5e 3t 2e t + 2e 2t (4)O (t ) = t 3t e t + 2e 2te+e0. 25e t + 0. 25e 3t 0
38、. 5e t + 0. 5e 3t001 10 0Q 中(0)=0 sin t cos t= 001:/:I0 cos t sintt= 00 1 0不满足状态转移矩阵的条件。(2)1 0.5(1 e 2t ) 1 0 Q 0 (0) = = =1 2t e 0 t = 0 0 1 ,满足状态转移矩阵的条件。& & 由e(t ) = A6(t ),得中(0) = A(0) = A & (t )=e 2t , 2t 0 2 e0OOle2t&=A=0 ( 0) = 2t 0 2e t =0 0 2 (3)2e t e 2t Q 0 (0) = t 2t e e2e t + 2e 2t =1 e
39、t + 2e 2 t t = 0 工满足状态转移矩阵的条件。2e t + 2e 2t & A =(0) = t 2t e + 2e 0 2 2e t 4e 2t = t 2t e 4e t = 0 1 3 (4)0. 5e t + 0. 5e 3t Q 0 (0) = t 3t e +e0. 25e t + 0. 25e 3t =1 0. 5e t + 0. 5e 3t t =0 工满足状态转移矩阵的条件。0. 5e t + 1. 5e 3t & A = ( 0) = t 3t e + 3e 1 1 0. 25e t + 0. 75e 3t = t 3t 0. 5e + 1.5e t =0 4
40、 1Page 24 of 84现代控制理论习题详解 victory 上传& 3-2-4已知线性时变系统为x =2t 11 x ,试求系统的状态转移矩阵。2t 【解】:取A(tl )=2tl 1 t1 , 2tl2t 2 A(t 2 ) = 11 ,得:A(tl ) * A(t 2 ) = A(t 2 ) * A(tl ) 2t 2 f A( t ) d t = I + t 2 t (t , t 0 ) = e t 0 f tO11 1 dx + 2 t 2!J2t t0 1t1 d t + L 2 t22331222ttO + tOt2 + Ll + (tOt)+3(ttO)+2(ttO)+L
41、O) (t,t0)=212231+(t0t2) + (t3t0) + (tt0)+Ltt0 + t0t2 + L321001x + u,初始条件为 x(0)=试 2 3 1 1& 3-2-5已知线性定常系统的状态方程为x =求输入为单位阶跃函数时系统状态方程的解。【解】:中(t ) = LI ( si A) 1 s+3 ( s + 1) (s + 2) 0)(t ) = LI 2 ( s + 1) ( s + 2) 1 t 2t ( s + 1)(s + 2) 2e e = t 2t s 2e + 2e ( s + 1)(s + 2) e t e 2t e t + 2e 2t0. 5 + 0.
42、 5e 2t x(t ) = 0 (t ) x (0) A 1 I e(t )B = 2t e3-2-6&已知线性定常系统的状态空间表达式为x =1 0 2 x + u , 5 6 0y = 1 2x ,已知状态的初始条件为x(0)=,输入量为u (t ) = e t 10(t20),试求系统的输出响应。【解】:5 t 1 5t e 4e (t) = L ( si A) =455et+e 5t 441 1Itl5tee441t55te+e44y (t ) = cO (t ) x(0) + c(t t ) Bu ( t )d t0JtPage 25 of 84现代控制理论习题详解victory
43、上传5 t 1 5t e 4e = 1 2 4 5 5 e t + e 5t 4 4 5 (t t ) 1 5(t t ) e e 4 + 1 2 4 5 (t t ) 5 5(t t ) e + e 0 4 4tltl5tee04415et+e5tl441 (t t ) 1 5(t t ) e e 2 t 4 4 e d t 1 (t t ) 5 5(t t ) 0 e + e 4 4J91 = et + e5t + 44 f5 (t T ) 1 5(t T ) e e t 2 1 2 25 e d t 5 e (t x ) + e 5(t x )022 t9595791 =et + e5t
44、+(et + e 5t + 4x ) d x =tet + et + e 5t (t2 0) 42288402& 3-2-7线性定常系统的齐次方程为x = Ax(t ),已知当x(0)=!时,状态方程的解为2e 2t e t 1 ;而当x(0)=时,状态方程的解为x(t ) = t ,试求:x (t ) = 2t 2e e 1(1)系统的状态转移矩阵(t ) ; (2)系统的系数矩阵A。【解】:x (t ) = 0 (t ) x ( 0 )xl (t ) 11 12 xl (0) = x 2 (t ) 21 22 x 2 (0)e 2t 11 12 1 e t 11 12 1 = ; t =
45、2t 2e 21 22 2 e 21 22 1 11 2 12 = e 2t , 21 2 22 = 2e 2t 11 12 = e t ,21 22 = e t12 2e t e 2t 中(t ) = 11 = t 2t 21 22 2e + 2eete2tet+2e2tPage 26 of 84现代控制理论习题详解victory 上传& A =(t ) & 3-2-8已知线性时变系统为x = 0 1 x, 0 tt =01 0 = 2 3 1 x(0)=.试求系统状态方程的解。1【解】:对任意时间tl和t2有A(tl )=得:A(tl) *A(t2)A(t2) *A(tl ) 所以有O(t ,0) = I + A( t )d t + A(t 1 ) A(t 2 )d t 2 d t 1 + L0 0 0 t t0 1 , 0 tl0 1 A(t 2 ) = 0 t 2JfT 1Jt0100 = + 2+ 010 0. 5t012t2+L13t612t2 + L) X 1 1 1 3 t 6t 0 1 0 0 x(t ) = 0 (t ,0) x(0) = ( + 2+ 0 1 0 0. 5t 0llltt2Lt + t2L1122X=x(t )