《云南省2023年教师资格之中学数学学科知识与教学能力强化训练试卷A卷附答案.doc》由会员分享,可在线阅读,更多相关《云南省2023年教师资格之中学数学学科知识与教学能力强化训练试卷A卷附答案.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、云南省云南省 20232023 年教师资格之中学数学学科知识与教学年教师资格之中学数学学科知识与教学能力强化训练试卷能力强化训练试卷 A A 卷附答案卷附答案单选题(共单选题(共 5050 题)题)1、纤溶酶的主要作用是水解()A.因子B.因子aC.因子D.因子和aE.因子【答案】D2、下列哪项有关尿含铁血黄素试验的说法,正确的是()A.是慢性血管内溶血的有力证据B.含铁血黄素内主要为二价铁C.急性溶血者尿中始终为阴性D.经肝细胞分解为含铁血黄素E.阴性时能排除血管内溶血【答案】A3、体内含铁最丰富的蛋白是A.白蛋白B.血红蛋白C.肌红蛋白D.铁蛋白E.球蛋白【答案】D4、外周免疫器官包括A.
2、脾脏、淋巴结、其他淋巴组织B.扁桃腺、骨髓、淋巴结C.淋巴结、骨髓、脾脏D.胸腺、脾脏、粘膜、淋巴组织E.腔上囊、脾脏、扁桃体【答案】A5、日本学者 Tonegawa 最初证明 BCR 在形成过程中()A.体细胞突变B.N-插入C.重链和轻链随机重组D.可变区基因片段随机重排E.类别转换【答案】D6、适应性免疫应答A.具有特异性B.时相是在感染后数分钟至 96hC.吞噬细胞是主要效应细胞D.可遗传E.先天获得【答案】A7、血小板膜糖蛋白b 与下列哪种血小板功能有关()A.黏附功能B.聚集功能C.分泌功能D.凝血功能E.维护血管内皮的完整性【答案】A8、内源凝血途径的始动因子是下列哪一个()A.
3、因子B.因子C.因子D.因子E.因子【答案】C9、设?(x)为a,b上的连续函数,则下列命题不正确的是()(常考)A.?(x)在a,b上有最大值B.?(x)在a,b上一致连续C.?(x)在a,b上可积D.?(x)在a,b上可导【答案】D10、义务教育阶段的数学教育的三个基本属性是()。A.基础性、竞争性、普及型B.基础性、普及型、发展性C.竞争性、普及性、发展性D.基础性、竞争性、发展性【答案】B11、临床检测血清,尿和脑脊液中蛋白质含量的常用仪器设计原理是A.化学发光免疫测定原理B.电化学发光免疫测定原理C.酶免疫测定原理D.免疫浊度测定原理E.免疫荧光测定原理【答案】D12、男,30 岁,
4、受轻微外伤后,臀部出现一个大的血肿,患者既往无出血病史,其兄有类似出血症状;检验结果:血小板 30010A.ITPB.血友病C.遗传性纤维蛋白原缺乏症D.DICE.Evans 综合征【答案】B13、下列属于获得性溶血性贫血的疾病是A.冷凝集素综合征B.珠蛋白生成障碍性贫血C.葡萄糖磷酸异构酶缺陷症D.遗传性椭圆形红细胞增多症E.遗传性口形红细胞增多症【答案】A14、最早使用“函数”(function)这一术语的数学家是()。A.约翰贝努利B.莱布尼茨C.雅各布贝努利D.欧拉【答案】B15、在学习数学和应用数学的过程中逐步形成和发展的数学学科核心素养包括:()、直观想象、数学运算、数据分析等。A
5、.分类讨论B.数学建模C.数形结合D.分离变量【答案】B16、患者,男,28 岁,患尿毒症晚期,拟接受肾移植手术。兄弟间器官移植引起排斥反应的物质是A.异种抗原B.自身抗原C.异嗜性抗原D.同种异体抗原E.超抗原【答案】D17、骨髓病态造血最常出现于下列哪种疾病A.缺铁性贫血B.再生障碍性贫血C.骨髓增生异常综合征D.传染性单核细胞增多症E.地中海贫血【答案】C18、设 n 阶方阵 M 的秩 r(M)=rn,则它的 n 个行向量中().A.任意一个行向量均可由其他 r 个行向量线性表示B.任意 r 个行向量均可组成极大线性无关组C.任意 r 个行向量均线性无关D.必有 r 个行向量线性无关【答
6、案】D19、下列选项中,()属于影响初中数学课程的社会发展因素。A.数学的知识、方法和意义B.从教育的角度对数学所形成的价值认识C.学生的知识、经验和环境背景D.当代社会的科学技术、人文精神中蕴含的数学知识与素养等【答案】D20、高中数学学习评价关注学生知识技能的掌握,更关注数学学科()的形式和发展,制定学科合理的学业质量要求,促进学生在不同学习阶段数学学科核心素养水平的达成。A.核心素养B.数学能力C.数学方法D.数学技能【答案】A21、人类的白细胞分化抗原是()A.Lyt 抗原B.Ly 抗原C.CD 抗原D.HLA 抗原E.黏附分子【答案】C22、型超敏反应根据发病机制,又可称为A.免疫复
7、合物型超敏反应B.细胞毒型超敏反应C.迟发型超敏反应D.速发型超敏反应E.型超敏反应【答案】B23、与意大利传教士利玛窦共同翻译了几何原本(卷)的我国数学家是()。A.徐光启B.刘徽C.祖冲之D.杨辉【答案】A24、已知随机变量 X 服从正态分布 X(,2),假设随机变量 Y=2X-3,Y 服从的分布是()A.N(2-3,22-3)B.N(2-3,42)C.N(2-3,42+9)D.N(2-3,42-9)【答案】B25、证明通常分成直接法和间接法,下列证明方式属于间接法的是()。A.分析法B.综合法C.反证法D.比较法【答案】C26、-血小板球蛋白(-TG)存在于A.微丝B.致密颗粒C.颗粒D
8、.溶酶体颗粒E.微管【答案】C27、关于心肌梗死,下列说法错误的是A.是一种常见的动脉血栓性栓塞性疾病B.血管内皮细胞损伤的检验指标增高C.生化酶学和血栓止血检测是诊断的金指标D.较有价值的观察指标是分子标志物检测E.血小板黏附和聚集功能增强【答案】C28、浆细胞性骨髓瘤的诊断要点是A.骨髓浆细胞增多30%B.高钙血症C.溶骨性病变D.肾功能损害E.肝脾肿大【答案】A29、属于检测型超敏反应的试验A.Coombs 试验B.结核菌素皮试C.挑刺试验D.特异性 IgG 抗体测定E.循环免疫复合物测定【答案】C30、世界上讲述方程最早的著作是()。A.中国的九章算术B.阿拉伯花拉子米的代数学C.卡尔
9、丹的大法D.牛顿的普遍算术【答案】A31、下列关于高中数学课程变化的内容,说法不正确的是()。A.高中数学课程中的向量既是几何的研究对象,也是代数的研究对象B.高中数学课程中,概率的学习重点是如何计数C.算法是培养逻辑推理能力的非常好的载体D.集合论是一个重要的数学分支【答案】B32、下列属于获得性溶血性贫血的疾病是A.冷凝集素综合征B.珠蛋白生成障碍性贫血C.葡萄糖磷酸异构酶缺陷症D.遗传性椭圆形红细胞增多症E.遗传性口形红细胞增多症【答案】A33、已知向量 a 与 b 的夹角为/3,且|a|=1,|b|=2,若 m=a+b 与 n=2a-b互相垂直,则的为()。A.-2B.-1C.1D.2
10、【答案】D34、正常情况下血液中不存在的是A.因子B.因子C.因子D.因子E.因子【答案】A35、原位溶血的场所主要发生在A.肝脏B.脾脏C.骨髓D.血管内E.卵黄囊【答案】C36、日本学者 Tonegawa 最初证明 BCR 在形成过程中()A.体细胞突变B.N-插入C.重链和轻链随机重组D.可变区基因片段随机重排E.类别转换【答案】D37、A.淋巴细胞B.成熟红细胞C.胎盘滋养层细胞D.上皮细胞E.神经细胞【答案】A38、“数学是一种文化体系。”这是数学家()于 1981 年提出的。A.华罗庚B.柯朗C.怀尔德D.王见定【答案】C39、内、外源性凝血系统形成凝血活酶时,都需要的因子是A.因
11、子B.因子C.因子D.因子E.因子【答案】D40、患者,男,28 岁,患尿毒症晚期,拟接受肾移植手术。移植器官的最适供者是A.父母双亲B.同卵双生兄弟C.同胞姐妹D.同胞兄弟E.无关个体【答案】B41、肝素酶存在于A.微丝B.致密颗粒C.颗粒D.溶酶体颗粒E.微管【答案】D42、已知向量 a 与 b 的夹角为/3,且|a|=1,|b|=2,若 m=a+b 与 n=2a-b互相垂直,则的为()。A.-2B.-1C.1D.2【答案】D43、下列内容属于义务教育数学课程标准(2011 年版)第三学段“数与式”的是()。A.B.C.D.【答案】C44、Westgard 质控处理规则的应用可以找出的误差
12、是A.系统误差B.随机误差C.系统误差和随机误差D.偶然误差E.以上都不是【答案】C45、定量检测病人外周血免疫球蛋白常用的方法是()A.间接血凝试验B.双向琼脂扩散C.单向琼脂扩散D.外斐试验E.ELISA【答案】C46、特发性血小板减少性紫癜的原因主要是A.DICB.遗传性血小板功能异常C.抗血小板自身抗体D.血小板第 3 因子缺乏E.血小板生成减少【答案】C47、下列描述为演绎推理的是()。A.从一般到特殊的推理B.从特殊到一般的推理C.通过实验验证结论的推理D.通过观察猜想得到结论的推理【答案】A48、MBL 途径A.CPi-CH50B.AP-CH50C.补体结合试验D.甘露聚糖结合凝
13、集素E.B 因子【答案】D49、关于抗碱血红蛋白的叙述,下列哪项是不正确的A.又称碱变性试验B.珠蛋白生成障碍性贫血时,HbF 减少C.用半饱和硫酸铵中止反应D.用 540nm 波长比色E.测定 HbF 的抗碱能力【答案】B50、高中数学学习评价关注学生知识技能的掌握,更关注数学学科()的形式和发展,制定学科合理的学业质量要求,促进学生在不同学习阶段数学学科核心素养水平的达成。A.核心素养B.数学能力C.数学方法D.数学技能【答案】A大题(共大题(共 1010 题)题)一、函数单调性是刻画函数变化规律的重要概念,也是函数的一个重要性质。()请叙述函数严格单调递增的定义,并结合函数单调性的定义,
14、说明中学数学课程中函数单调性与哪些内容有关(至少列举出两项内容);(分)()请列举至少两种研究函数单调性的方法,并分别简要说明其特点。(分)【答案】本题主要考查函数单调性的知识,考生对中学课程内容的掌握以及考生的教学设计能力。二、在“有理数的加法”一节中,对于有理数加法的运算法则的形成过程,两位教师的一些教学环节分别如下:【教师】第一步:教师直接给出几个有理数加法算式,引导学生根据有理数的分类标准,将加法算式分成六类,即正数与正数相加,正数与负数相加,正数与相加,与相加,负数与相加,负数与负数相加。第二步:教师给出具体情境,分析两个正数相加,两个负数相加,正数与负数相加的情况。第三步:让学生进
15、行模仿练习。第四步:教师将学生模仿练习的题目分成四类:同号相加,一个加数是,互为相反数的两个数相加,异号相加。分析每一类题目的特点,得到有理数加法法则。【教师】第一步:请学生列举一些有理数加法的算式。第二步:要求学生先独立运算,然后小组讨论,再全班交流。对于讨论交流的过程,教师提出具体要求:运算的结果是什么?你是怎么得到结果的?讨论过程中,学生提出利用具体情境来解释运算的合理性第三步:教师提出问题:“不考虑具体情境,基于不同情况分析这些算式的运算,有哪些规律?”分组讨论后再全班交流,归纳得到有理数加法法则。问题:【答案】本题考查考生对基本数学思想方法的掌握及应用。三、严谨性与量力性相结合”是数
16、学教学的基本原则。(1)简述“严谨性与量力性相结合”教学原则的内涵(3 分);(2)初中数学教学中“负负得正”运算法则引入的方式有哪些?请写出至少两种(6 分);(3)在初中“负负得正”运算法则的教学中,如何体现“严谨性与量力性相结合”的教学原则?(6分)【答案】本题主要考查严谨性与量力性的教学原则,以及课堂导入技巧的教学技能知识。(1)“严谨性与量力性相结合”教学原则的内涵是指数学逻辑的严密性及结论的精确性,在中学的数学理论中也不例外。所谓数学的严谨性,就是指对数学内容结论的叙述必须精确,结论的论证必须严格、周密,整个数学内容被组织成一个严谨的逻辑系统。教材有时对有些内容避而不谈,或用直观说
17、明,或用不完全归纳法验证,或不必说明的作了说明,或扩大公理体系等,这些做法主要是考虑到学生的可接受性,估计降低内容的严谨性,让学生更好地掌握要学的数学内容。当前数学界提出的“淡化形式,注重实质”的口号实质上也是侧面反映出数学必须坚持严谨性与量力性相结合原则的问题。(2)初中数学教学中“负负得正”运算法则引入的方式可以从生活中的负数入手,举出两个引入的方式即可。(3)在初中“负负得正”运算法则的教学中,可以根据学生的认知水平和学生接受的难易程度入手,设法安排学生逐步适应的过程与机会,然后再利用一些数学模型解析“负负得正”运算法则,从而体现“严谨性与量力性相结合”的教学原则。四、下面给出“变量与函
18、数”一节的教学片段:创设情境,导入新课教师:同学们,从小学步入初中到现在的八年级这段时间里,你发生了哪些变化学生:年龄增长了;个子长高了;知识增多了;体重增加了;课教学设计中存在的不足之处,以及在进行知识技能教学时应该坚持的基本原则。【答案】本节课的教学设计对于知识技能教学属于反面案例,主要不足之处有两点:(1)创设情境的目的应该为当节课的教学内容服务,本节课应该指向引入“变量”的概念,教师在引入环节中,只注重了变量的特征之一“变”,却忽视了“在一个变化过程中”这一变量的前提条件,而这一条件对学生进一步理解变量及函数的概念至关重要(2)一个新的数学概念的建立必须经历一个由粗浅到精致,由不完整到
19、严谨的过程,同时要注重引导学生理解其中的关键词的含义,还应通过适当数量的正反例揭示概念的内涵与外延,否则概念的建立是没有联系的,也是不稳定的同时,数学概念的理解应该让学生用自己的语言复述,而不是简单的死记硬背在进行知识技能教学时应该坚持的基本原则有:(1)体现生成性;(2)展现建构性;(3)注重过程性;(4)彰显主体性;(5)突出目标性五、案例:面对课堂上出现的各种各样的意外生成,教师如何正确应对,如何让这些生成为我们高效的课堂教学服务如何把自己课前的预设和课堂上的生成有效融合,从而实现教学效果的最大化这是教师时刻面临的问题。在一次听课中有下面的一个教学片段:教师在介绍完中住线的概念后,布置了
20、一个操作探究活动。师:大家把手中的三角形纸片沿其一条中位线剪开,并用剪得的纸片拼出一个四边形,由这个活动你可以得到哪些和中位线有关的结论学生正准备动手操作,一名学生举起了手。生:我不剪彩纸也知道结论。师:你知道什么结论生:三角形的中位线平行于第三边并等于第三边的一半。教师没有想到会出现这么个“程咬金”,脸冷了下来:“你怎么知道的”生:我昨天预习了,书上这么说的。师:就你聪明。坐下!后面的教学是在沉闷的气氛中进行的学生操作完成后再也不敢举手发言了。问题:(1)结合上面这位教师的教学过程,简要做出评析;(10 分)(2)结合你的教学经历,说明如何处理好课堂上的意外生成。(10 分)【答案】(1)在
21、课堂上,教师面对的是一群有着不同生活经历、有自己的想法。在很多方面存在差异的生命体,也正是因为有这种差异,课堂才是充满变化、丰富多彩的,教师如果不能适应这种变化,不能及时正确处理课堂的生成,那么其课堂效果将很难保证是高效的。在上面的教学片段中教师对学生直接说出中位线的性质很是不满,因为这样一来教师后面设计好的精彩探索活动就没有必要再进行了。碰上这样的意外,教师采取了生硬的处理方式。让其他学生继续探索,但此时教师的不满情绪和处理这件事情的方式使得全班同学失去了探索的兴趣和发言的勇气。教师如果换一种方式,先表扬发言学生“你真是个爱学习的学生,我相信你还是个爱思考的学生!”然后让他和大家一道动手操作
22、、探索、验证中位线为什么会具有这样的性质,课堂效果应该更好。(2)生成从性质角度来说,有积极的一面,也有消极的一面,从效果角度来说有有效的一面,也有无效的一面。教师在课堂上要充分发挥好自己组织者的角色,不断地捕捉、判断、重组课堂教学中从学生那里涌现出来的各种各种各类信息,并能快速断定哪些生成对教学是有效的,哪些生成是偏离了教学目标,一名优秀的数学教师应该能够正确应对课堂上出现的各种各样生成,使之为我们的数学教学服务,提高课堂教学的效果。六、在学习有理数的加法一课时,某位教师对该课进行了深入的研究,做出了合理的教学设计,根据该课内容完成下列任务:(1)本课的教学目标是什么(2)本课的教学重点和难
23、点是什么(3)在情境引入的时候,某位老师通过一道实际生活中遇到的走路问题引出有理数的加法,让学生讨论得出有理数加法的两个数的符号,这样做的意义是什么【答案】(1)教学目标:知识与技能:通过实例,了解有理数的加法的意义,会根据有理数加法法则进行有理数的加法运算。过程与方法:用数形结合的思想方法得出有理数的加法法则,能运用有理数加法解决实际问题。情感态度与价值观:渗透数形结合的思想,培养运用数形结合的方法解决问题的能力,感知数学知识来源于生活,用联系发展的观点看待事物,逐步树立辩证唯物主义观点。(2)教学重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。教学难点:有理数加法中的
24、异号两数进行加法运算。(3)这样做是为了让学生能直观感受到有理数的存在,通过贴近生活现实的实例进行讨论,得出结论会印象深刻,使学生对有理数的知识点掌握更加牢固。七、在弧度制的教学中,教材在介绍了弧度制的概念时,直接给出“1 弧度的角”的定义,然而学生难以接受,常常不解地问:“怎么想到要把长度等于半径的弧所对的圆心角叫作 1 弧度的角?”如果老师照本宣科,学生便更加感到乏味:“弧度,弧度,越学越糊涂。”“弧度制”这类学生在生活与社会实践中从未碰到过的概念,直接给出它的定义,学生会很难理解。问题:(1)谈谈“弧度制”在高中数学课程中的作用;(8 分)(2)确定“弧度制”的教学目标和教学重难点;(1
25、0 分)(3)根据教材,设计一个“弧度制概念”引入的教学片段,引导学生经历从实际背景抽象概念的过程。(12 分)【答案】八、案例:面对课堂上出现的各种各样的意外生成,教师如何正确应对,如何让这些生成为我们高效的课堂教学服务如何把自己课前的预设和课堂上的生成有效融合,从而实现教学效果的最大化这是教师时刻面临的问题。在一次听课中有下面的一个教学片段:教师在介绍完中住线的概念后,布置了一个操作探究活动。师:大家把手中的三角形纸片沿其一条中位线剪开,并用剪得的纸片拼出一个四边形,由这个活动你可以得到哪些和中位线有关的结论学生正准备动手操作,一名学生举起了手。生:我不剪彩纸也知道结论。师:你知道什么结论
26、生:三角形的中位线平行于第三边并等于第三边的一半。教师没有想到会出现这么个“程咬金”,脸冷了下来:“你怎么知道的”生:我昨天预习了,书上这么说的。师:就你聪明。坐下!后面的教学是在沉闷的气氛中进行的学生操作完成后再也不敢举手发言了。问题:(1)结合上面这位教师的教学过程,简要做出评析;(10 分)(2)结合你的教学经历,说明如何处理好课堂上的意外生成。(10 分)【答案】(1)在课堂上,教师面对的是一群有着不同生活经历、有自己的想法。在很多方面存在差异的生命体,也正是因为有这种差异,课堂才是充满变化、丰富多彩的,教师如果不能适应这种变化,不能及时正确处理课堂的生成,那么其课堂效果将很难保证是高
27、效的。在上面的教学片段中教师对学生直接说出中位线的性质很是不满,因为这样一来教师后面设计好的精彩探索活动就没有必要再进行了。碰上这样的意外,教师采取了生硬的处理方式。让其他学生继续探索,但此时教师的不满情绪和处理这件事情的方式使得全班同学失去了探索的兴趣和发言的勇气。教师如果换一种方式,先表扬发言学生“你真是个爱学习的学生,我相信你还是个爱思考的学生!”然后让他和大家一道动手操作、探索、验证中位线为什么会具有这样的性质,课堂效果应该更好。(2)生成从性质角度来说,有积极的一面,也有消极的一面,从效果角度来说有有效的一面,也有无效的一面。教师在课堂上要充分发挥好自己组织者的角色,不断地捕捉、判断
28、、重组课堂教学中从学生那里涌现出来的各种各种各类信息,并能快速断定哪些生成对教学是有效的,哪些生成是偏离了教学目标,一名优秀的数学教师应该能够正确应对课堂上出现的各种各样生成,使之为我们的数学教学服务,提高课堂教学的效果。九、下面是某位老师引入“负数”概念的教学片段。师:我们当地 7 月份的平均气温是零上 28,l 月份的平均气温是零下 3,问 7 月份的平均气温比 1月份的平均气温高几度如何列式计算生:用零上 28减去零下 3,得到的答案是 31。师:答案没错,算式呢生:文字与数字混在一起,一点也不美观。生:零上 28,我们常说成 28,可用 28 表示,但是零下 3不能说成 3呀!也就不能
29、用 3 表示。师:大家的发言很有道理,如何解决这一系列的矛盾呢看样子有必要引入一个新数来表示零下 3c。这时,零下 3就可写成-3,-3就是负数。问题:(1)对该教师情境创设的合理性作出解释;(2)在引入数学概念时,结合上述案例,说说教师创设情境要考虑哪些因素【答案】(1)在这段教学中,教师没有将负数的概念强压给学生,而是设计了计算温度这个情境,让学生自己参与计算活动,发现其中的困惑,从而产生学习新数学概念的意愿。教师只是从中提炼出学生的想法,并进一步上升为数学知识负数。这样,负数概念的提出,成为了学生的自觉行为。学生对负数概念的引入有了较深的思想基础,就会认识到学习负数的必要性,为学好负数奠
30、定了基础。(2)引入数学概念是教学的开始,学生能否掌握好这个概念,与教师引入的艺术是密切联系的。因此,在引人数学概念时,要考虑下面的因素。学习的必要性。引入新概念时,教师应创设一个引入概念的情境,让学生在情境中领会概念产生的必要性。内容的实质性。引入数学概念时,教师所选用的实例要反映概念的本质,不要让太多的无关因素干扰了学生学习的注意力,影响数学概念的形成。数量的适量性。在引入概念时,教师一般要举出一些例子,以便加深学生对概念的初步认识。实例的趣味性。教师在选用例子进行概念教学时,要注意例子的生动有趣,要能引发学生的学习兴趣。教师要尽量结合学生的生活实际或者选择学生非常熟悉与非常感兴趣的问题作
31、为例子。一十、下列是三位教师对“等比数列概念”引入的教学片段。【教师甲】用实例引入,选了一个增长率的问题,有某国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?【教师乙】以具体的等比数列引入,先给出四个数列。1,2,4,8,16,1,-1,1,-1,1,-4,2,-1,1,1,l,1,1,由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?【教师丙】以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等差数列?你能类比猜想什么是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。【答案】