《用对偶单纯形法求解线性规划问题(4页).doc》由会员分享,可在线阅读,更多相关《用对偶单纯形法求解线性规划问题(4页).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-例4-7例4-8例4-9例4-10 用对偶单纯形法求解线性规划问题-第 4 页例4-11 用对偶单纯形法求解线性规划问题. Min z =5x1+3x s.t. -2 x1 + 3x6 3 x1 - 6 x4 Xj0(j=1,2)解: 将问题转化为 Max z = -5 x1 - 3 x s.t. 2 x1 - 3x+ x3 = -6 -3 x1 + 6 x+ x4-4 Xj0(j=1,2,3,4)其中,x3 ,x4 为松弛变量,可以作为初始基变量,单纯形表见表4-17. 表4-17 例4-7单纯形表Cj-6-3-40CBXBbX1X2X3X4迭代0次0X4-62-3100X5-4-3601
2、0-5-300CBXBbX1X2X3X4迭代1次-3X42-2/31-1/300X3-1610216-70-10在表4-17中,b=-160,而y0,故该问题无可行解.注意: 对偶单纯形法仍是求解原问题,它是适用于当原问题无可行基,且所有检验数均为负的情况.若原问题既无可行基,而检验数中又有小于0的情况.只能用人工变量法求解.在计算机求解时,只有人工变量法,没有对偶单纯形法.3.对偶问题的最优解由对偶理论可知,在原问题和对偶问题的最优解之间存在着密切的关系,可以根据这些关系,从求解原问题的最优单纯形表中,得到对偶问题的最优解.(1) 设原问题(p)为 Min z=CX s.t. 则标准型(LP
3、)为 Max z=CX s.t. 其对偶线性规划(D)为 Max z=bTY s.t. 用对偶单纯形法求解(LP),得最优基B和最优单纯形表T(B)。对于(LP)来说,当j=n+i时,有Pj=-ei,cj=0从而,在最优单纯形表T(B)中,对于检验数,有(n+1,n+2n+m)=(cn+1,cn+2,cn+m)-CBB-1(Pn+1,Pn+2,Pn+m)=- CBB-1 (-I)于是,Y*=(n+1,n+2n+m)T 。可见,在(LP)的最优单纯形表中,剩余变量对应的检验数就是对偶问题的最优解。同时,在最优单纯形表T(B)中,由于剩余变量对应的系数所以 B-1 =(-y n+1,-y n+2-
4、yn+m) 例4-12 求下列线性规划问题的对偶问题的最优解。 Min z =6x1+8x s.t. x1 + 2x20 3 x1 + 2x50 Xj0(j=1,2)解: 将问题转化为 Max z =-6x1-8x s.t. -x1 2x + x3=20 -3 x1 - 2x+ x4 =50 Xj0(j=1,2,3,4)用对偶单纯形法求解如表 表4-18 例4-8单纯形表Cj-6-800CBXBbX1X2X3X4迭代0次-8X45/201-3/41/4-6X515101/2-1/2-1100031在引入松弛变量化为标准型之后,约束等式两侧同乘-1,能够立即得到检验数全部非正的原规划基本解,可以
5、直接建立初始对偶单纯形表进行求解,非常方便。 对于有些线性规划模型,如果在开始求解时不能很快使所有检验数非正,最好还是采用单纯形法求解。因为,这样可以免去为使检验数全部非正而作的许多工作。从这个意义上看,可以说,对偶单纯形法是单纯形法的一个补充。除此之外,在对线性规划进行灵敏度分析中有时也要用到对偶单纯形方法,可以简化计算。例4-9:求解线性规划问题: Min f = 2x1 + 3x2 + 4x3 S.t. x1 + 2x2 + x3 3 2x1 - x2 + x3 4 x1 , x2 , x3 0 标准化:Max z = - 2x1 - 3x2 - 4x3 s.t. -x1-2x2-x3+x4= -3 -2x1+x2-3x3+x5= -4 x1,x2,x3,x4,x5 0表格对偶单纯形法 Cj-6-800CBXBbX1X2X3X4迭代0次-8X45/201-3/41/4-6X515101/2-1/2-1100031