人教版高中数学 映射课件 新人教必修1.ppt

上传人:赵** 文档编号:68133752 上传时间:2022-12-27 格式:PPT 页数:23 大小:470.50KB
返回 下载 相关 举报
人教版高中数学 映射课件 新人教必修1.ppt_第1页
第1页 / 共23页
人教版高中数学 映射课件 新人教必修1.ppt_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《人教版高中数学 映射课件 新人教必修1.ppt》由会员分享,可在线阅读,更多相关《人教版高中数学 映射课件 新人教必修1.ppt(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、映射的概念映射的概念2021/8/9 星期一1一般地,设一般地,设A A、B B是两个非空的是两个非空的数集数集,如果按某种对应法则如果按某种对应法则f f,对于集合,对于集合A A中的中的每每一个元素一个元素x x,在集合,在集合B B中都有中都有唯一唯一的元素的元素y y和和它对应,这样的对应叫做它对应,这样的对应叫做集合集合A A到集合到集合B B的的一个函数一个函数复习复习:函数的概念函数的概念函数的本质:函数的本质:建立在两个非空数集上的特殊对应建立在两个非空数集上的特殊对应2021/8/9 星期一2复习复习:函数的概念函数的概念这种这种“特殊对应特殊对应”有何特点:有何特点:1.可

2、以是可以是“一对一一对一”2.可以是可以是“多对一多对一”3.不能不能“一对多一对多”4.A中不能有剩余元素中不能有剩余元素5.B中可以有剩余元素中可以有剩余元素2021/8/9 星期一3F 新课:新课:初中我们学过一些初中我们学过一些“对应对应”的例子:的例子:(1)对于任何一个实数,数轴上都有唯一的点和它对应;)对于任何一个实数,数轴上都有唯一的点和它对应;(2)对于坐标平面内的任何一个点,都有唯一的有序)对于坐标平面内的任何一个点,都有唯一的有序 实数对(实数对(x,y)和它对应;)和它对应;(3)对于任意一个三角形,都有唯一的确定的面积)对于任意一个三角形,都有唯一的确定的面积 和它对

3、应;和它对应;(4)对于任意一个二次函数,相应坐标平面内都有)对于任意一个二次函数,相应坐标平面内都有 唯一的抛物线和它对应。唯一的抛物线和它对应。2021/8/9 星期一4问题问题3:你还能找出生活中的一些你还能找出生活中的一些 “对应对应”的例子吗?的例子吗?AB对应对应*从从集合集合的角度来讲,这些对应是的角度来讲,这些对应是集合集合之间根据之间根据 一定的一定的法则法则进行的对应进行的对应法则法则f回到前面回到前面2021/8/9 星期一5(1)对于任何一个实数,数轴上都有唯一的点和它对应;)对于任何一个实数,数轴上都有唯一的点和它对应;(2)对于坐标平面内的任何一个点,都有唯一的有序

4、)对于坐标平面内的任何一个点,都有唯一的有序 实数对(实数对(x,y)和它对应;)和它对应;A=R,B=数轴上的点数轴上的点A=坐标平面内的点坐标平面内的点,B=(x,y)|x,y R (3)对于任意一个三角形,都有唯一的确定的面积)对于任意一个三角形,都有唯一的确定的面积 和它对应;和它对应;A=三角形三角形,B=三角形的面积三角形的面积(4)对于任意一个二次函数,相应坐标平面内都有)对于任意一个二次函数,相应坐标平面内都有 唯一的抛物线和它对应。唯一的抛物线和它对应。A=二次函数二次函数,B=坐标平面内的抛物线坐标平面内的抛物线法则法则f:在数轴上画点:在数轴上画点法则法则f:在坐标平面内

5、画点:在坐标平面内画点法则法则f:求面积:求面积法则法则f:画图像:画图像2021/8/9 星期一6941A3-32-21-1B开平方开平方300450600900A求正弦求正弦1B149B求平方求平方1-12-23-3A123456B乘与乘与2123A(1)(4)(3)(2)前进2021/8/9 星期一7F 总结:总结:对于集合对于集合A中的中的任何任何一个元素,按照某种一个元素,按照某种法则法则f,在集合在集合B中都有中都有确定的确定的(一个或多个一个或多个)元素和它)元素和它对应对应。回上图发现规律:发现规律:上图(上图(2)()(3)()(4)中,)中,A中任何一个中任何一个 元素在元

6、素在B中都有中都有唯一唯一的元素和它对应的元素和它对应问题问题4:前面是各张图中,:前面是各张图中,A中元素和中元素和B中分别中分别 是怎样的对应?是怎样的对应?F 定义:定义:引出引出2021/8/9 星期一8F 定义定义1 1:一般地,设一般地,设A、B是两个是两个集合集合。如果按照。如果按照某种某种对应法则对应法则,对于集合,对于集合A中的中的任何任何一一个元素,在集合个元素,在集合B中都有中都有唯一唯一的元素和它的元素和它对应,那么这样的对应(包括集合对应,那么这样的对应(包括集合A、B及及A到到B的对应法则的对应法则f)叫做集合)叫做集合A到集合到集合B的的映射映射。记作:。记作:f

7、:AB F 注意:注意:(2)符号)符号“f:AB”表示表示A到到B的的映射映射;(3)映射有)映射有三个要素三个要素:两个集合,一种对应法则:两个集合,一种对应法则;(4)集合的)集合的顺序性顺序性:f:AB 与与 f:BA是不同的:是不同的:(5)箭尾集合中元素的任意性(少一个也不行)。箭尾集合中元素的任意性(少一个也不行)。箭头集合中元素的唯一性(多一个也不行)。箭头集合中元素的唯一性(多一个也不行)。即只能多对一、一对一,不能开花!即只能多对一、一对一,不能开花!(1)映射是一种特殊的对应;)映射是一种特殊的对应;2021/8/9 星期一9(1 1)函数是特殊的映射,是数集到数集的映射

8、)函数是特殊的映射,是数集到数集的映射思考:映射与函数有什么区别与联系?思考:映射与函数有什么区别与联系?函数函数 建立在两个建立在两个非空数集非空数集上的特殊对应上的特殊对应映射映射 建立在两个建立在两个任意集合任意集合上的特殊对应上的特殊对应扩扩 展展(2 2)映射是函数概念的扩展,映射不一定是函数)映射是函数概念的扩展,映射不一定是函数(3 3)映射与函数都是特殊的对应)映射与函数都是特殊的对应1.可以是可以是“一对一一对一”2.可以是可以是“多对一多对一”3.不能不能“一对多一对多”4.A中不能有剩余元素中不能有剩余元素5.B中可以有剩余元素中可以有剩余元素2021/8/9 星期一10

9、(4)(3)941A3-32-21-1B开平方开平方300450600900A求正弦求正弦1B149B求平方求平方1-12-23-3A123456B乘与乘与2123A(1)(2)问题问题4:根据映射定义,指出哪些对应是根据映射定义,指出哪些对应是A到到B的映射?的映射?2021/8/9 星期一11例例1 1:判断下面的对应是否为映射判断下面的对应是否为映射:(1)设)设A=1,2,3,4,B=3,4,5,6,7,8,9。集合集合A中的元素中的元素x按照对应法则按照对应法则“乘乘2加加1”和集合和集合B中的中的元素元素2x+1对应,这个对应是否为集合对应,这个对应是否为集合A到集合到集合B的映射

10、?的映射?为什么?为什么?(2)设)设A=N+,B=0,1。集合。集合A中的元素中的元素x按照对应按照对应法则法则“x除以除以2得的余数和集合得的余数和集合B中的元素对应中的元素对应”,这个对,这个对应是否为集合应是否为集合A到集合到集合B的映射?为什么?的映射?为什么?(3)设)设A=x|x是直角三角形是直角三角形,B=y|y0,集合集合A中的元素中的元素x按照对应法则按照对应法则“计算面积计算面积”和集合和集合B中的元素对中的元素对应,这个对应是否为集合应,这个对应是否为集合A到集合到集合B的映射?为什么?的映射?为什么?2021/8/9 星期一12数学应用:数学应用:2已知已知Mx|0

11、x2,N y|0y2,下列图中表示从,下列图中表示从M到到N的的映射共有多少个?映射共有多少个?2112xy2112xy2112xy2112xyO2112xyOO2112xyOOO(1)(2)(3)(5)(6)(4)2021/8/9 星期一13F 定义定义2 2:给定一个集合给定一个集合A到集合到集合B的映射,且的映射,且aA,bB。如果元素。如果元素a和元素和元素b对应,那么我对应,那么我们把元素们把元素b叫做元素叫做元素a的的象象,元素,元素a叫做元叫做元素素b的的原象原象。aAbBa的象的象b的原象的原象f2021/8/9 星期一14941A3-32-21-1B开平方开平方3004506

12、00900A求正弦求正弦1B149B求平方求平方1-12-23-3A123456B乘与乘与2123A(1)(4)(3)(2)的原象450的象2021/8/9 星期一15给定映射给定映射f:AB。则集合。则集合A中任何一个元素在集中任何一个元素在集合合B中都有中都有唯一唯一的象,而集合的象,而集合B中的元素在集合中的元素在集合A中中不一定不一定都有原象,也都有原象,也不一定不一定只有一个原象。只有一个原象。F 注意:注意:149B求平方求平方1-12-23-3A3456789B1234A乘乘2加加1比如:比如:2021/8/9 星期一16(1)mnpqBabcdAf(2)3579B1234Af1

13、3579B1234Af(3)问题问题5:图中所示的三个对应图中所示的三个对应 是不是映射?是不是映射?2021/8/9 星期一17问题问题6:图中的(图中的(1)()(2)所示的映射有什么特点?)所示的映射有什么特点?(1)mnpqBabcdAf(2)3579B1234Af发现规律:发现规律:(1)对于集合)对于集合A中的中的不同元素不同元素,在集合,在集合B中有中有不同的象不同的象,我们把这样的映射称为我们把这样的映射称为单射单射。(2)集合)集合B中的中的每一个元素都有原象每一个元素都有原象,我们把这样,我们把这样 的映射称为的映射称为满射满射。问题问题7:单射满射单射满射=?定义定义3

14、3:引出引出前进前进2021/8/9 星期一18F定义定义3 3:一般地,设一般地,设A、B是两个集合。是两个集合。f:AB 是集合是集合A到集合到集合B的映射,如果在这个映射的映射,如果在这个映射 下,下,对于集合对于集合A的不同元素,在集合的不同元素,在集合B中中 有不同的象有不同的象,且,且B中每一个元素都有原象中每一个元素都有原象,那么这个映射叫做那么这个映射叫做A到到B上的上的一一映射一一映射。单射单射满射满射一一映射一一映射充要条件充要条件返回返回F 注意:注意:(1)一一映射是一种特殊的映射。)一一映射是一种特殊的映射。(2)映射和一一映射之间的充要关系)映射和一一映射之间的充要

15、关系(3)一一映射:)一一映射:A和和B中元素个数相等中元素个数相等映射是一一映射的必要而不充分条件映射是一一映射的必要而不充分条件2021/8/9 星期一19例例2 2:判断下面的对应是否为映射判断下面的对应是否为映射,是否为一一映射?,是否为一一映射?(1)A=0,1,2,4,9,B=0,1,4,9,64,对应法则对应法则 f:a b=(a-1)201249A014964B答:答:是映射,不是一一映射。是映射,不是一一映射。2021/8/9 星期一20(2)A=0,1,4,9,16,B=-1,0,1,2,3,4,对应法则对应法则 f:求平方根:求平方根(3)A=Z,B=N*,对应法则,对应

16、法则 f:求绝对值:求绝对值(4)A=11,16,20,21,B=6,2,4,0,对应法则对应法则 f:求被:求被7除的余数除的余数答:答:不是映射。不是映射。答:答:不是映射。不是映射。答:答:是映射,且是一一映射。是映射,且是一一映射。练习:练习:课本课本4949页页1-41-42021/8/9 星期一21F课时小结:课时小结:映射的定义(映射的定义(映射三要素:两个集合,一种对应法则映射三要素:两个集合,一种对应法则)映射的表示方法映射的表示方法 f:AB象与原象的概念象与原象的概念*注意注意:2.一一映射是一种特殊的映射:一一映射是一种特殊的映射:A到到B是映射,是映射,B到到A也是映射。也是映射。1.映射是一种特殊的对应:多对一、一对一映射是一种特殊的对应:多对一、一对一 一一映射的定义一一映射的定义单射满射单射满射=一一映射一一映射2021/8/9 星期一222021/8/9 星期一23

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁