背包问题动态规划详解及代码(共4页).docx

上传人:飞****2 文档编号:6777934 上传时间:2022-02-10 格式:DOCX 页数:4 大小:36.98KB
返回 下载 相关 举报
背包问题动态规划详解及代码(共4页).docx_第1页
第1页 / 共4页
背包问题动态规划详解及代码(共4页).docx_第2页
第2页 / 共4页
点击查看更多>>
资源描述

《背包问题动态规划详解及代码(共4页).docx》由会员分享,可在线阅读,更多相关《背包问题动态规划详解及代码(共4页).docx(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。比如01背包问题。/* 一个旅行者有一个最多能用M公斤的背包,现在有N件物品,它们的重量分别是W1,W2,.,Wn,它们的价值分别为P1,P2,.,Pn.若每种物品只有一件求旅行者能获得最大总价值。输入格式:M,NW1,P1W2,P2.输出格式: X */因为背包最大容量M未知。所以,我们的程序要从1到M一个一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择

2、是最大价值呢?看下表。测试数据:10,33,44,55,6cij数组保存了1,2,3号物品依次选择后的最大价值.这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为4,5,6,.10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。加谁?很显然是7-4=3的时候.上一排 c3的最佳方案是4.所以。总的最佳方案是5+4为9.这样.一排一排推下

3、去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.)从以上最大价值的构造过程中可以看出。f(n,m)=maxf(n-1,m), f(n-1,m-wn)+P(n,m)这就是书本上写的动态规划方程.这回清楚了吗?下面是实际程序(在VC 6.0环境下通过):#includeint c10100;/*对应每种情况的最大价值*/int knapsack(int m,int n) int i,j,w10,p10; printf(请输入每个物品的重量,价值:n); for(i=1;i=n;i+

4、) scanf(%d,%d,&wi,&pi); for(i=0;i10;i+) for(j=0;j100;j+) cij=0;/*初始化数组*/ for(i=1;i=n;i+) for(j=1;j=m;j+) if(wici-1j) /*如果本物品的价值加上背包剩下的空间能放的物品的价值*/ /*大于上一次选择的最佳方案则更新cij*/ cij=pi+ci-1j-wi; else cij=ci-1j; else cij=ci-1j; return(cnm); int main() int m,n;int i,j;printf(请输入背包的承重量,物品的总个数:n); scanf(%d,%d,&m,&n); printf(旅行者背包能装的最大总价值为%d,knapsack(m,n); printf(n); return 0; 专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 教育教学

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁