数据库文化基础 (9).pdf

上传人:奉*** 文档编号:67739638 上传时间:2022-12-26 格式:PDF 页数:17 大小:2.70MB
返回 下载 相关 举报
数据库文化基础 (9).pdf_第1页
第1页 / 共17页
数据库文化基础 (9).pdf_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《数据库文化基础 (9).pdf》由会员分享,可在线阅读,更多相关《数据库文化基础 (9).pdf(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、Eigenvalue and Eigenvector5thweek/Linear AlgebraObjectives of This Week2The goal is to understandEigenvectors and eigenvaluesNull spaceCharacteristic equationFinding all eigenvalues and eigenvectors3Eigenvectors and Eigenvalues Definition:An eigenvector of a square matrix is a nonzero vector such th

2、at =for some scalar In this case,is called an eigenvalue of,andsuch an is called an eigenvector corresponding to.4Transformation Perspective Consider a linear transformation x x=x x.If x x is an eigenvector,then x x=x x=,which means the output vector has the same direction as x x,but the length is s

3、caled by a factor of.Example:For =2653,an eigenvector is 11since x x=x x=265311=88=811x x=8 8=8115Computational Advantage Which computation is faster between 265311and 811?6Eigenvectors and Eigenvalues The equation =can be re-written as =is an eigenvalue of an matrix if and only if this equation has

4、 a nontrivial solution(since should be a nonzero vector).7Eigenvectors and Eigenvalues =The set of all solutions of the above equation is the null space of the matrix ,which we call the eigenspace of corresponding to.The eigenspace consists of the zero vector and all the eigenvectors corresponding t

5、o,satisfying the above equation.8Null Space Definition:The null space of a matrix is the set of all solutions of =called a homogeneous linear system.We denote the null space of as Nul.For =12,should satisfy the following:1=0,2=0,=0 That is,should be orthogonal to every row vector in.9Null Space is a

6、 Subspace Theorem:The null space of a matrix is a subspace of.In other words,the set of all the solutions of a system =is a subspace of.Note:An eigenspace thus have a set of basis vectorswith a particular dimension.10Example:Eigenvalues and Eigenvectors Example:Show that 8 is an eigenvalue of a matr

7、ix =2653and find the corresponding eigenvectors.Solution:The scalar 8 is an eigenvalue of if and only if the equation 8 =has a nontrivial solution:The solution is =11for any nonzero scalar,which is Span11.8 =6655=11Example:Eigenvalues and Eigenvectors In the previous example,3 is also an eigenvalue:

8、+3 =5656=The solution is =15/6for any nonzero scalar,which is Span15/6.12Characteristic Equation How can we find the eigenvalues such as 8 and 3?If =has a nontrivial solution,then the columns of should be noninvertible.If it is invertible,cannot be a nonzero vector since 1 =1 =Thus,we can obtain eig

9、envalues by solving det =0called a characteristic equation.Also,the solution is not unique,and thus has linearly dependent columns.13Example:Characteristic Equation In the previous example,=2653is originally invertible since det =det2653=6 30=24 0.By solving the characteristic equation,we want to fi

10、nd that makes non-invertible:det =det2 653 =2 3 30=2 5 25=8 3 =0=3 or 814Example:Characteristic Equation Once obtaining eigenvalues,we compute the eigenvectors for each by solving =15Eigenspace Note that the dimension of the eigenspace(corresponding to a particular)can be more than one.In this case,

11、any vector in the eigenspace satisfies x x=x x=33Multiplication by acts as a dilation on the eigenspace16Finding all eigenvalues and eigenvectors In summary,we can find all the possible eigenvalues and eigenvectors,as follows.First,find all the eigenvalue by solving the characteristic equation:det =0 Second,for each eigenvalue,solve for =and obtain the set of basis vectors of the corresponding eigenspace.Eigenvectors and eigenvaluesCharacteristic equationFinding all eigenvalues and eigenvectorsSummary

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁