微积分全英微积分全英 (29).pdf

上传人:奉*** 文档编号:67733238 上传时间:2022-12-26 格式:PDF 页数:13 大小:951.94KB
返回 下载 相关 举报
微积分全英微积分全英 (29).pdf_第1页
第1页 / 共13页
微积分全英微积分全英 (29).pdf_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《微积分全英微积分全英 (29).pdf》由会员分享,可在线阅读,更多相关《微积分全英微积分全英 (29).pdf(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、11.4 The Cross ProductProblem IntroductionHow to define the product of the two vectors in another way?DefinitionNow we introduce the cross product(or vector product);it will also have many applications.123123The cross product of,and,is defined byuvuu u uvv v v=The anticommutative law:()u vv u=2 33 2

2、1 33 11 22 1,uvu vu vu vu v u vu v=+231312123231312123Using determinants,we can write the definition of asuvijkuuuuuuuvuuuijkvvvvvvvvv=+Theorem AGeometric Interpretation of uv:Let u and v be vectors in three-dimensional space and ab a bright-handed system(1)()0(),that is,is perpendicular to both and

3、(2),and form a right-handed system;(3)|=|sinu uvv uvuvuvu vuvuvu v=;Theorem BThat is a simple consequence of Theorem A.Two vectors u and v in three-dimensional space are parallel if and only if uv=0.DefinitionAttention:0)1(=aa)0sin0(=Vector product is also called cross product or outer product.1.Def

4、inition:and abCross product of vectorsis cab=|sincab=Length:included angle of,a bis perpendicular to both andand follows right-handed system.ca,bDirection:ba)2(/0=ba)0,0(baDefinition2.Cross product follows the following laws:PROOF,0sin=,0 =ba/)(0 or=0sin=ba/;ab =ba(1)Anti-commutativity law)(,0|a,0|b

5、0=ba(2)Distributive law=+cba)(;cbca+ba)2(/0=ba)0,0(ba=|ba=sin|ba.0=ba)(=)(ba).(ba (3)If is a scalar DefinitionDoes cross product of vectors satisfy cancellation law?No!Generally,No.attention,caba=.cb=0 aattentionDoes cross product of vectors satisfy commutative law?Definition3.Calculate cross produc

6、t using coordinates expression,kajaiaazyx+=kbjbibbzyx+=Let=ba)(kajaiazyx+)(kbjbibzyx+kbabajbabaibabaxyyxzxxzyzzy)()()(+=coordinates expression of cross product Distribution law 0iijjkk=ijk=jki=kij=jik=kji=ikj=Definitioncross product can also be expressed by determinants zzyyxxbababa=We getba/0=bazyxzyxbbbaaakjiba=0=zyxbbb,can not be 0 simultaneously.|ab=|sinabIn fact,Example 1Find the unit vector that is perpendicular to vectors324,aijk=+2bijk=+=kj5152xyzxyzijkcabaaabbb=324112ijk=105jk=+22|1055 5c=+=0|ccc=SummaryThe definition of cross productOperation lawsTheorems A and BThe Cross Product

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁