《山东省济宁市高三数学一轮复习专项训练等差等比综合问题含解析.doc》由会员分享,可在线阅读,更多相关《山东省济宁市高三数学一轮复习专项训练等差等比综合问题含解析.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、考点一等差、等比数列的综合问题1、 已知等差数列an的公差不为零,a125,且a1,a11,a13成等比数列(1)求an的通项公式;(2)求a1a4a7a3n2.解(1)设an的公差为d.由题意,得aa1a13,即(a110d)2a1(a112d)于是d(2a125d)0.又a125,所以d2或0(舍去)故an2n27.(2)令Sna1a4a7a3n2.由(1)知a3n26n31,故a3n2是首项为25,公差为6的等差数列从而Sn(a1a3n2)(6n56)3n228n.2、已知数列an是公差为2的等差数列,它的前n项和为Sn,且a11,a31,a71成等比数列(1)求an的通项公式;(2)求
2、数列的前n项和Tn.解(1)由题意,得a31a15,a71a113,所以由(a31)2(a11)(a71)得(a15)2(a11)(a113)解得a13,所以an32(n1),即an2n1.(2)由(1)知an2n1,则Snn(n2),Tn.考点二:数列与函数、不等式的综合应用1、设数列an满足a12,a2a48,且对任意nN*,函数f(x)(anan1an2)xan1cos xan2sin x满足f0.(1)求数列an的通项公式;(2)若bn,求数列bn的前n项和Sn.解(1)由题设可得,对任意nN*,f(x)anan1an2an1sin xan2cos x.fanan1an2an10,即a
3、n1anan2an1,故an为等差数列由a12,a2a48,解得数列an的公差d1,所以an21(n1)n1.(2)由bn22n2,知Snb1b2bn2n2n23n1.2、已知正项数列an的首项a11,前n项和Sn满足an(n2)(1)求证:为等差数列,并求数列an的通项公式;(2)记数列的前n项和为Tn,若对任意的nN*,不等式4Tna2a恒成立,求实数a的取值范围解(1)因为an,所以SnSn1,即1,所以数列是首项为1,公差为1的等差数列,得n,所以ann(n1)2n1(n2),当n1时,a11也适合,所以an2n1.(2)因为,所以,Tn.Tn,要使不等式4Tna2a恒成立,只需2a2
4、a恒成立,解得a1或a2,故实数a的取值范围是(,12,)考点:数列综合练习题1公比不为1的等比数列an的前n项和为Sn,且3a1,a2,a3成等差数列,若a11,则S4()A20 B0 C7 D40解析记等比数列an的公比为q(q1),依题意有2a23a1a3,2a1q3a1a1q2,即q22q30,(q3)(q1)0,又q1,因此有q3,则S420.答案A2若9,a,1成等差数列,9,m,b,n,1成等比数列,则ab()A15 B15 C15 D10解析由已知得a5,b2(9)(1)9且b1 025的最小n值是()A9 B10 C11 D12解析因为a11,log2an1log2an1(n
5、N*),所以an12an,an2n1,Sn2n1,则满足Sn1 025的最小n值是11.答案C4已知an为等比数列,Sn是它的前n项和若a2a32a1,且a4与2a7的等差中项为,则S5()A35 B33 C31 D29解析设数列an的公比为q,则由等比数列的性质知,a2a3a1a42a1,即a42.由a4与2a7的等差中项为知,a42a72,a7.q3,即q.a4a1q3a12,a116,S531.答案C5设yf(x)是一次函数,若f(0)1,且f(1),f(4),f(13)成等比数列,则f(2)f(4)f(2n)等于()An(2n3) Bn(n4) C2n(2n3) D2n(n4)解析由题
6、意可设f(x)kx1(k0),则(4k1)2(k1)(13k1),解得k2,f(2)f(4)f(2n)(221)(241)(22n1)2n23n.答案A6已知实数a1,a2,a3,a4构成公差不为零的等差数列,且a1,a3,a4构成等比数列,则此等比数列的公比等于_解析设公差为d,公比为q.则aa1a4,即(a12d)2a1(a13d),解得a14d,所以q.答案7某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(nN*)等于_解析每天植树棵数构成等比数列an,其中a12,q2.则Sn2(2n1)100,即2n1102.n6,最少天数n6.答案64