2021年天津卷文数高考试题文档版(含答案).docx

上传人:知****量 文档编号:67653400 上传时间:2022-12-26 格式:DOCX 页数:10 大小:410.33KB
返回 下载 相关 举报
2021年天津卷文数高考试题文档版(含答案).docx_第1页
第1页 / 共10页
2021年天津卷文数高考试题文档版(含答案).docx_第2页
第2页 / 共10页
点击查看更多>>
资源描述

《2021年天津卷文数高考试题文档版(含答案).docx》由会员分享,可在线阅读,更多相关《2021年天津卷文数高考试题文档版(含答案).docx(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、绝密启用前2019年普通高等学校招生全国统一考试(天津卷)数 学(文史类)本试卷分为第卷(选择题)和第卷(非选择题)两部分,共150分,考试用时120分钟。第卷1至2页,第卷3至5页。答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。祝各位考生考试顺利第卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。2.本卷共8小题,每小题5分共40分。参考公式:一、选择题:在每小题给出的四个选项中,只有一项是符合

2、题目要求的。(1)设集合, , ,则(A)2(B)2,3(C)-1,2,3(D)1,2,3,4 (2)设变量满足约束条件则目标函数的最大值为(A)2(B)3(C)5(D)6(3)设,则“”是“”的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件(4)阅读右边的程序框图,运行相应的程序,输出的值为(A)5(B)8(C)24(D)29(5)已知,则的大小关系为(A)(B)(c)(D)(6)已知抛物线的焦点为,准线为.若与双曲线的两条渐近线分别交于点A和点B,且(为原点),则双曲线的离心率为(A)(B)(C)2(D)(7)已知函数是奇函数,且的最小正周期为,将的图

3、象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为.若,则(A)-2(B)(C) (D)2(8)已知函数若关于的方程恰有两个互异的实数解,则的取值范围为(A)(B)(C) (D)绝密启用前2019年普通高等学校招生全国统一考试(天津卷)数 学(文史类)第卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。2.本卷共12小题,共110分。二、填空题:本大题共6小题,每小题5分,共30分。(9)是虚数单位,则的值的值为_.(10)设,使不等式成立的的取值范围为_.(11)曲线在点处的切线方程为_.(12)已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆

4、周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_.(13)设,则的最小值为_.(14)在四边形中, , , ,点在线段的延长线上,且,则_.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.(15)(本小题满分13分)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有人,现采用分层抽样的方法,从该单位上述员工中抽取人调查专项附加扣除的享受情况.()抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为.享受情况如右

5、表,其中“”表示享受,“”表示不享受.现从这6人中随机抽取2人接受采访.员工项目ABCDEF子女教育继续教育大病医疗住房贷款利息住房租金赡养老人(i)试用所给字母列举出所有可能的抽取结果;(ii)设为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件发生的概率.(16)(本小题满分13分)在中,内角所对的边分别为.已知,.()求的值;()求的值.(17)(本小题满分13分)如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,()设分别为的中点,求证:平面;()求证:平面;()求直线与平面所成角的正弦值.(18)(本小题满分13分)设是等差数列,是等比数列,公比大于,已知, ,.

6、()求和的通项公式;()设数列满足求.(19)(本小题满分14分)设椭圆的左焦点为,左顶点为,顶点为B.已知(为原点).()求椭圆的离心率;()设经过点且斜率为的直线与椭圆在轴上方的交点为,圆同时与轴和直线相切,圆心在直线上,且,求椭圆的方程.(20)(本小题满分14分设函数,其中.()若,讨论的单调性;()若,(i)证明恰有两个零点(ii)设为的极值点,为的零点,且,证明.绝密启用前2019年普通高等学校招生全国统一考试(天津卷)数 学(文史类)参考解答一.选择题:本题考查基本知识和基本运算.每小题5分,满分40分(1)D(2)C(3)B(4)B(5)A(6)D(7)C(8)D二.填空题:本

7、题考查基本知识和基本运算.每小题5分,满分30分(9)(10)(11)(12)(13)(14)三.解答题(15)本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力,满分13分.解:(1)由已知,老、中、青员工人数之比为,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员中分别抽取6人,9人,10人.()(i)从已知的6人中随机抽取2人的所有可能结果为,共15种.(ii)由表格知,符合题意的所有可能结果为,共11种.所以,事件发生的概率(16)本小题主要考查同角三角函数的基本关系,两角和的正弦公式,

8、二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力.满分13分.(1)解:在中,由正弦定理,得,又由,得,即.又因为,得到,.由余弦定理可得.()解:由(1)可得,从而,故.(17)本小题主要考查直线与平面平行直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力和推理论证能力满分13分.()证明:连接,易知,.又由,故,又因为平面,平面,所以平面.()证明:取棱的中点,连接.依题意,得,又因为平面平面,平面平面,所以平面,交平面,故.又已知,所以平面.()解:连接,由()中平面,可知为直线与平面所成的角,因为为等边三角形,且为的中点,所以.又,

9、在中,.所以,直线与平面所成角的正弦值为.(18)本小题主要考查等差数列、等比数列的通项公式及其前项和公式等基础知识,考查数列求和的基本方法和运算求解能力.满分13分.()解:设等差数列的公差为,等比数列的公比为依题意,得,解得,故,.所以,的通项公式为,的通项公式 为.()解: . , -得,.所以, .(19)本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力,满分14分.()解:设椭圆的半焦距为,由已知有,又由,消去得,解得.所以,椭圆的离心率为.()解:由()知, ,故椭圆方程为

10、.由题意,则直线的方程为.点P的坐标满足,消去并化简,得到,解得,代入到的方程,解得,.因为点在轴上方,所以.由圆心在直线上,可设.因为,且由()知,故,解得.因为圆与轴相切,所以圆的半径为2,又由圆与相切,得,可得.所以,椭圆的方程为.(20)本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法,考查函数思想、化归与转化思想.考查综合分析问题和解决问题的能力.满分14分.()解:由已知,的定义域为,且因此当时, ,从而,所以在内单调递增.()证明:(i)由()知.令,由,可知在内单调递减,又,且.故在内有唯一解,从而在内有唯一解,不妨设为,则.当时,所以在内单调递增;当时,所以在内单调递减,因此是的唯一极值点.令,则当时,故在内单调递减,从而当时, ,所以.从而,又因为,所以在内有唯零点.又在内有唯一零点1,从而,)在内恰有两个零点.(ii)由题意,即,从而,即.因为当时, ,又,故,两边取对数,得,于是,整理得.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁