六年级数学下册 第五章 基本平面图形单元复习课件 鲁教五四制.ppt

上传人:赵** 文档编号:67586853 上传时间:2022-12-25 格式:PPT 页数:43 大小:775KB
返回 下载 相关 举报
六年级数学下册 第五章 基本平面图形单元复习课件 鲁教五四制.ppt_第1页
第1页 / 共43页
六年级数学下册 第五章 基本平面图形单元复习课件 鲁教五四制.ppt_第2页
第2页 / 共43页
点击查看更多>>
资源描述

《六年级数学下册 第五章 基本平面图形单元复习课件 鲁教五四制.ppt》由会员分享,可在线阅读,更多相关《六年级数学下册 第五章 基本平面图形单元复习课件 鲁教五四制.ppt(43页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第五章 单元复习课一、平面图形中的相关概念一、平面图形中的相关概念1.直线直线(1)直线公理直线公理:经过两点有且只有一条直线经过两点有且只有一条直线.简述为简述为:两点确定一条两点确定一条直线直线.(2)特征特征:一是一是“直直”的的;二是向两方无限延伸的二是向两方无限延伸的;三是没有粗细三是没有粗细.(3)点和直线的位置关系点和直线的位置关系:一个点在直线上一个点在直线上,也可以说这条直线经过也可以说这条直线经过这个点这个点.(4)直线性质的应用直线性质的应用:木工师傅画线木工师傅画线,日常生活中往墙上钉木条等日常生活中往墙上钉木条等.2.射线射线直线上的一点和它一旁的部分叫做射线直线上的

2、一点和它一旁的部分叫做射线,这个点叫做射线的端点这个点叫做射线的端点.3.线段线段(1)线段的概念线段的概念:直线上的两个点和它们之间的部分叫做线段直线上的两个点和它们之间的部分叫做线段,这两这两个点叫做线段的端点个点叫做线段的端点.(2)两点之间的距离两点之间的距离:两点之间线段的长度叫做这两点之间的距离两点之间线段的长度叫做这两点之间的距离.(3)线段公理线段公理:两点之间的所有连线中两点之间的所有连线中,线段最短线段最短,即两点之间线段即两点之间线段最短最短.4.线段的中点及等分点的概念线段的中点及等分点的概念如图如图1所示所示,点点B把线段把线段AC分成两条相等的线段分成两条相等的线段

3、,点点B叫做线段叫做线段AC的的中点中点,有有AB=BC=AC;如图如图2所示所示,点点B和点和点C把线段把线段AD分成三条相分成三条相等的线段等的线段,点点B、点、点C叫做线段叫做线段AD的三等分点的三等分点,有有AB=BC=CD=AD.类似地类似地,还有线段的四等分点、五等分点等还有线段的四等分点、五等分点等.5.角角(1)角的概念角的概念:角由两条具有公共端点的射线组成角由两条具有公共端点的射线组成,也可以看成是由一条射线绕也可以看成是由一条射线绕着它的端点旋转而成的着它的端点旋转而成的.(2)角的组成部分角的组成部分:角的两条射线的公共端点叫做这个角的顶点角的两条射线的公共端点叫做这个

4、角的顶点,起起始位置的射线叫做角的始边始位置的射线叫做角的始边,终止位置的射线叫做角的终边终止位置的射线叫做角的终边.如图如图:(3)角的表示方法角的表示方法:角的几何符号用角的几何符号用“”“”表示表示,表示方法如下表示方法如下:注注:混淆了角的四种表示方法的适用范围造成表述不清混淆了角的四种表示方法的适用范围造成表述不清,产生产生误解误解.平角与直线、周角与射线的区别平角与直线、周角与射线的区别:由平角、周角的概念由平角、周角的概念,可见可见平角成一直线平角成一直线,而周角又成一射线而周角又成一射线.但不能说但不能说,直线是一个平角或直线是一个平角或射线是一个周角射线是一个周角.平角也是角

5、平角也是角,角有顶点角有顶点(两条射线的公共端点两条射线的公共端点),而而直线没有端点直线没有端点,也就是没有顶点也就是没有顶点,不能构成角不能构成角.而周角也是由两条而周角也是由两条边组成的边组成的,只是它的两条边重合罢了只是它的两条边重合罢了,故一条射线不作旋转不能称故一条射线不作旋转不能称为周角为周角.6.角的平分线角的平分线(1)定义定义:从一个角的顶点引出的一条射线从一个角的顶点引出的一条射线,把这个角分成两个相把这个角分成两个相等的角等的角,这条射线叫做这个角的平分线这条射线叫做这个角的平分线.(2)几何语言表示几何语言表示:OC是是AOB的平分线的平分线,AOB=2 AOC=2

6、COB(或或AOC=COB=AOB).(3)对于角的平分线的概念对于角的平分线的概念,需要注意需要注意:它是角的内部的一条射线它是角的内部的一条射线,并且是一条特殊的射线并且是一条特殊的射线,它把角分成它把角分成了相等的两部分了相等的两部分.二、直线、射线、线段三者的联系和异同二、直线、射线、线段三者的联系和异同1.三者的联系三者的联系:直线和射线、线段是整体与部分的关系直线和射线、线段是整体与部分的关系.射线和线射线和线段都是直线的一部分段都是直线的一部分.线段向一方延长可得射线线段向一方延长可得射线,向两方延长可得向两方延长可得直线直线;射线反向延长可得直线射线反向延长可得直线.在射线上取

7、一点可得线段在射线上取一点可得线段,在直线在直线上取一点可得两条射线上取一点可得两条射线,取两点可得一条线段取两点可得一条线段.2.相同点相同点:它们都是由无数个点构成的它们都是由无数个点构成的,都是直的都是直的,都没有粗细都没有粗细.3.不同点不同点:无论是表示线段、射线无论是表示线段、射线,还是直线还是直线,都要在字母前面注明都要在字母前面注明“线段线段”、“射线射线”或或“直线直线”;用两个大写字母表示线段或直用两个大写字母表示线段或直线时线时,两个字母地位平等两个字母地位平等,可交换位置可交换位置,而表示射线的两个大写字而表示射线的两个大写字母不能交换位置母不能交换位置,必须把表示端点

8、的字母写在前面必须把表示端点的字母写在前面.注注:(1)射线的表示应注意的问题射线的表示应注意的问题表示端点的字母一定要写在前面表示端点的字母一定要写在前面,使字母的顺序与射线延伸的使字母的顺序与射线延伸的方向一致方向一致.同一条射线是指射线的端点相同同一条射线是指射线的端点相同,而延伸方向也相同的射线而延伸方向也相同的射线.两条不同射线是指端点不同的射线两条不同射线是指端点不同的射线,或者是指端点相同但延伸或者是指端点相同但延伸方向不同的射线方向不同的射线.(2)线段的表示应注意的问题线段的表示应注意的问题线段线段AB和线段和线段BA是同一条线段是同一条线段;连接连接AB就是画以就是画以A,

9、B为端点为端点的线段的线段;延长线段延长线段AB是指按从是指按从A到到B的方向延长的方向延长.三、线段、角的大小比较及相关计算三、线段、角的大小比较及相关计算1.线段大小的比较线段大小的比较(1)度量法度量法.先量出线段先量出线段AB、线段、线段CD的长度的长度,根据它们的长度根据它们的长度(数量数量)进行比较进行比较,线段的大小关系与它们的长度关系是一致的线段的大小关系与它们的长度关系是一致的.(2)叠合法叠合法.如图所示如图所示.2.线段长度的计算线段长度的计算(1)在计算线段的长度时在计算线段的长度时,要弄清楚题中涉及的有关概念要弄清楚题中涉及的有关概念,如中点、如中点、两点间的距离等概

10、念两点间的距离等概念,根据图形确定所求线段与已知线段的关系根据图形确定所求线段与已知线段的关系,从而求出线段的长度从而求出线段的长度.(2)题目的分析和书写步骤问题题目的分析和书写步骤问题书写步骤大体可参照以下两个环节来进行书写步骤大体可参照以下两个环节来进行:一是确定要计算的一是确定要计算的线段表达式线段表达式;二是做运算前的准备二是做运算前的准备.每一个运算的局部都应按照条件每一个运算的局部都应按照条件表达式表达式代数代数答案这几答案这几个环节进行个环节进行.(3)在解决几何问题时在解决几何问题时,图形往往是关键图形往往是关键,而几何中的双解或多解大而几何中的双解或多解大多是由图形产生的多

11、是由图形产生的.在解决无图的几何题目时在解决无图的几何题目时,在只有作出图形才在只有作出图形才能解决问题的情况下能解决问题的情况下,要求必须具备根据条件作出图形的能力要求必须具备根据条件作出图形的能力,其其次注意考虑图形的完整性和各种可能性次注意考虑图形的完整性和各种可能性.要注意分类思想的应用要注意分类思想的应用.注注:与线段有关的计算与线段有关的计算,当没有给出图形时当没有给出图形时,特别是点的位置关系特别是点的位置关系不明确不明确,易造成审题不清易造成审题不清,忽略线段计算的多解情况忽略线段计算的多解情况,从而导致计从而导致计算的结果遗漏算的结果遗漏.3.角的个数的求法角的个数的求法求如

12、图所示的图形中包含角的个数求如图所示的图形中包含角的个数,所求的角都是小于平角的角所求的角都是小于平角的角,以以OA为边的角有为边的角有3个个,以以OB为边的角有为边的角有2个个,以以OC为边的角有为边的角有1个个.所以共有所以共有3+2+1=6(个个).拓展拓展:(1)如果图中以如果图中以O为端点为端点,有有3条射线条射线,共有共有2+1=3个角个角;如果如果图中以图中以O为端点有为端点有5条射线条射线,共有共有4+3+2+1=10个角个角.(2)这与已知直线上有这与已知直线上有n个点个点,共有共有 条线段类似条线段类似,探索探索:如如果以果以O为端点有为端点有n条射线条射线(构成的角都小于

13、平角构成的角都小于平角),组成的角有组成的角有(n-1)+(n-2)+(n-3)+3+2+1=个个.4.角的大小比较角的大小比较比较两个角的大小比较两个角的大小,可以有两种方法可以有两种方法(1)叠合法叠合法:把一个角放到另外一个角上把一个角放到另外一个角上,使它们的顶点重合使它们的顶点重合,其中其中的一边也重合的一边也重合,并使两个角的另一边都在这一条边的同侧并使两个角的另一边都在这一条边的同侧,再比较再比较大小大小.(2)度量法度量法:比较两个角的度数比较两个角的度数,度数大的角大度数大的角大.注注:两种方法的比较结果是一致的两种方法的比较结果是一致的.利用比较角大小的上述两种方法利用比较

14、角大小的上述两种方法,就可以画出角的和、差、倍、就可以画出角的和、差、倍、分分,并进而比较角的和、差、倍、分的大小并进而比较角的和、差、倍、分的大小.在比较角的大小时在比较角的大小时,应注意角的大小只与开口的大小有关应注意角的大小只与开口的大小有关,而而与角的边画出部分的长短无关与角的边画出部分的长短无关.这是因为角的边是射线而非线段这是因为角的边是射线而非线段.若用射线旋转成角的定义若用射线旋转成角的定义,也可以说转得较大的角较大也可以说转得较大的角较大.5.角的计算角的计算(1)角的度、分、秒之间的换算角的度、分、秒之间的换算:要把角用度表示要把角用度表示,就需要利用度、就需要利用度、分、

15、秒之间的进制关系分、秒之间的进制关系,从秒到分从秒到分,再从分到度的顺序进行再从分到度的顺序进行.将角将角的度量转化成度、分、秒的形式的度量转化成度、分、秒的形式,跟化成度的形式一样跟化成度的形式一样,需要利用需要利用度、分、秒之间的进制关系度、分、秒之间的进制关系,但顺序应按照从度到分但顺序应按照从度到分,再从分到秒再从分到秒的顺序的顺序.要注意进制要注意进制,在减法或除法计算时在减法或除法计算时,不够减或不够除不够减或不够除,则借则借1化作化作60;在角度的乘法运算中在角度的乘法运算中,可以运用乘法法则及运算律进行计可以运用乘法法则及运算律进行计算算,满满60进进1.(2)与图形有关的角的

16、计算与图形有关的角的计算,其要点为认真分析图形结构其要点为认真分析图形结构,找准角的找准角的和差与图形之间的对应关系和差与图形之间的对应关系,没有给出图形需要自己根据题意画没有给出图形需要自己根据题意画图的题目图的题目,要仔细审题要仔细审题,防止漏解防止漏解.注注:角的平分线的定义理解不清角的平分线的定义理解不清,几何语言与图形语言不相符几何语言与图形语言不相符,造成解题错误造成解题错误;审题不清审题不清,造成漏解造成漏解.平平面面图图形形线线角角直线直线射线射线线段线段表示方法表示方法角的比较角的比较线段的线段的比较比较正多边正多边形与圆形与圆 线段、射线、直线线段、射线、直线【相关链接相关

17、链接】线线段、射段、射线线、直、直线线是最基本的平面是最基本的平面图图形形,它它们们既有区既有区别别,又有又有联联系系.线线段的比段的比较较,线线段的中点与段的中点与计计算是中考的算是中考的热热点点,应应学会学会线线段、段、射射线线、直、直线线的的计计算方法以及掌握算方法以及掌握线线段、直段、直线线的性的性质质的的应应用用.【例例1】(1)(2011崇左中考崇左中考)在修建崇钦高速公路时在修建崇钦高速公路时,有时需要有时需要将弯曲的道路改直将弯曲的道路改直,依据是依据是.(2)(2011佛山中考佛山中考)已知线段已知线段AB=6,若若C为为AB的中点的中点,则则AC=.【思路点拨思路点拨】(1

18、)(1)若将改直的两个工程点看作点若将改直的两个工程点看作点,实际上是以实际上是以“两两点之间点之间,线段最短线段最短”为依据为依据.(2)(2)根据中点的定义根据中点的定义,则有则有AC=BC=ABAC=BC=AB或或2AC=2BC=AB.2AC=2BC=AB.【自主解答自主解答】(1)(1)两点之间两点之间,线段最短线段最短.(2)AC=AB=6=3,(2)AC=AB=6=3,即即AC=3.AC=3.答案答案:(1)(1)两点之间两点之间,线段最短线段最短(2)3(2)3 角的度量、比较与计算角的度量、比较与计算【相关链接相关链接】角也是基本的平面图形之一角也是基本的平面图形之一,它包括角

19、的概念、表示方法、角它包括角的概念、表示方法、角的度量、角的比较以及有关角的计算等内容的度量、角的比较以及有关角的计算等内容,它也是近几年中考它也是近几年中考的重点内容之一的重点内容之一.【例例2】(2011邵阳中考邵阳中考)如图所示如图所示,已知已知O是直线是直线AB上一点上一点,1=40,OD平分平分BOC,则则2的度数是的度数是()(A)20(B)25(C)30(D)70【思路点拨思路点拨】先根据平角的定义求出先根据平角的定义求出COBCOB的度数的度数,再由再由ODOD平分平分BOCBOC即可求出即可求出2 2的度数的度数.【自主解答自主解答】选选D.D.因为因为1=40,1=40,所

20、以所以COB=180-40=140,COB=180-40=140,因为因为ODOD平分平分BOC,BOC,所以所以2=BOC=140=70.2=BOC=140=70.【命题揭秘命题揭秘】结合近几年中考试题分析结合近几年中考试题分析,本章内容在中考中的题目有以下特本章内容在中考中的题目有以下特点点:1.题目以低档题为主题目以低档题为主,涉及的题型主要有选择题和填空题涉及的题型主要有选择题和填空题,也有少也有少量的与其他内容结合在一起的解答题量的与其他内容结合在一起的解答题.2.从命题内容看从命题内容看,角的计算以及直线、射线、线段的性质和简单角的计算以及直线、射线、线段的性质和简单计算都是中考的

21、热点计算都是中考的热点.3.以本章知识为数学模型的实际应用题、阅读理解题和规律探究以本章知识为数学模型的实际应用题、阅读理解题和规律探究题成为中考命题的新趋势题成为中考命题的新趋势.1.请你数一数请你数一数,图中共有线段的条数是图中共有线段的条数是()(A)4 (B)6 (C)8 (D)10【解析解析】选选D.D.按照一定顺序找按照一定顺序找,有线段有线段AB,AC,AD,AO,AB,AC,AD,AO,线段线段BO,BC,BO,BC,线段线段CO,CD,CO,CD,线段线段DO,DB,DO,DB,共共1010条条.2.如图如图,在平面内在平面内,两条直线两条直线l1,l2相交于点相交于点O,对

22、于平面内任意一点对于平面内任意一点M,若若p,q分别是点分别是点M到直线到直线l1,l2的距离的距离,则称则称(p,q)为点为点M的的“距离坐标距离坐标”,根据上述规定根据上述规定,“距离坐标距离坐标”是是(2,3)的点共有的点共有()(A)1个个 (B)2个个 (C)3个个(D)4个个【解析解析】选选D.D.因为两条直线将平面分为四部分因为两条直线将平面分为四部分,每一部分都有这每一部分都有这样的样的“距离坐标距离坐标”是是(2,3)(2,3)的点的点.故选故选D.D.3.如图如图,已知直线已知直线AB,CD相交于点相交于点O,OE平分平分COB,若若EOB=55,则则BOD的度数是的度数是

23、()(A)35(B)55(C)70(D)110【解析解析】选选C.C.因为因为OEOE平分平分COB,COB,所以所以COB=2BOE,COB=2BOE,所以所以BOD=180-COB=180-2BOEBOD=180-COB=180-2BOE=180-255=70.=180-255=70.4.有一扇形的圆心角为有一扇形的圆心角为45,则此扇形占整个圆的则此扇形占整个圆的_.【解析解析】答案答案:5.(2011娄底中考娄底中考)如图如图,点点C是线段是线段AB上的点上的点,点点D是线段是线段BC的中的中点点,若若AB=12,AC=8,则则CD=_.【解析解析】CD=(AB-AC)2=2.CD=(

24、AB-AC)2=2.答案答案:2 2 6.(2011崇左中考崇左中考)如图如图,O是直线是直线AB上一点上一点,COB=30,则则1=.【解析解析】因为因为1+COB=180,1+COB=180,所以所以1=180-COB=180-1=180-COB=180-30=150.30=150.答案答案:1501507.如图如图,线段线段AB=4,点点O是线段是线段AB上一动点上一动点,C,D分别是线段分别是线段OA,OB的的中点中点.(1)求求CD的长的长;(2)若点若点O运动到线段运动到线段AB的延长线上时的延长线上时,(1)中的结果还成立吗中的结果还成立吗?请请画出图形并说明理由画出图形并说明理

25、由.【解析解析】(1)(1)因为因为CD=OC+OD=AO+BOCD=OC+OD=AO+BO=(AO+BO)=AB.=(AO+BO)=AB.又因为又因为AB=4,AB=4,所以所以CD=AB=4=2.CD=AB=4=2.(2)CD=2(2)CD=2仍然成立仍然成立,理由如下理由如下:如图如图,当点当点O O在在ABAB的延长线上时的延长线上时,CD=OC-OD=CD=OC-OD=(OA-OB)(OA-OB)=AB=4=2.=AB=4=2.【归纳整合归纳整合】在解决点与线段关系的问题时在解决点与线段关系的问题时,若点在已知线段所若点在已知线段所在的直线上时在的直线上时,有三种情况要考虑有三种情况

26、要考虑,即点在线段上、点在线段延即点在线段上、点在线段延长线上、点在线段反向延长线上长线上、点在线段反向延长线上.因此因此,解决此类问题时应注意解决此类问题时应注意分类讨论分类讨论.8.已知已知AOB=60,如果从点如果从点O出发引一条射线出发引一条射线OC,使使BOC=20.求求AOC的度数的度数.【解析解析】当当OCOC在在AOBAOB的内部时的内部时,如图如图,此时此时AOC=AOB-AOC=AOB-BOC=60-20=40;BOC=60-20=40;当当OCOC在在AOBAOB的外部时的外部时,如图如图,此时此时AOC=AOB+BOC=60+20=80.AOC=AOB+BOC=60+20=80.所以所以AOCAOC等于等于4040或或80.80.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁