《主成分分析,因子分析(数据相关性降维).ppt》由会员分享,可在线阅读,更多相关《主成分分析,因子分析(数据相关性降维).ppt(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、主成分分析与因子分析主成分分析与因子分析的概念需要与可能:在各个领域的科学研究中,往往需要对反映事物的多需要与可能:在各个领域的科学研究中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律。多个变量进行大量的观测,收集大量数据以便进行分析寻找规律。多变量大样本无疑会为科学研究提供丰富的信息,但也在一定程度上变量大样本无疑会为科学研究提供丰富的信息,但也在一定程度上增加了数据采集的工作量,更重要的是在大多数情况下,许多变量增加了数据采集的工作量,更重要的是在大多数情况下,许多变量之间可能存在相关性而增加了问题分析的复杂性,同时对分析带来之间可能存在相关性而增加了问题分
2、析的复杂性,同时对分析带来不便。如果分别分析每个指标,分析又可能是孤立的,而不是综合不便。如果分别分析每个指标,分析又可能是孤立的,而不是综合的。盲目减少指标会损失很多信息,容易产生错误的结论。因此需的。盲目减少指标会损失很多信息,容易产生错误的结论。因此需要找到一个合理的方法,减少分析指标的同时,尽量减少原指标包要找到一个合理的方法,减少分析指标的同时,尽量减少原指标包含信息的损失,对所收集的资料作全面的分析。由于各变量间存在含信息的损失,对所收集的资料作全面的分析。由于各变量间存在一定的相关关系,因此有可能用较少的综合指标分别综合存在于各一定的相关关系,因此有可能用较少的综合指标分别综合存
3、在于各变量中的各类信息。主成分分析与因子分析就是这样一种降维的方变量中的各类信息。主成分分析与因子分析就是这样一种降维的方法。法。主成分分析与因子分析是将多个实测变量转换为少数几个不相关的主成分分析与因子分析是将多个实测变量转换为少数几个不相关的综合指标的多元统计分析方法综合指标的多元统计分析方法直线综合指标往往是不能直接观测到的,但它更能反映事物的本质。直线综合指标往往是不能直接观测到的,但它更能反映事物的本质。因此在医学、心理学、经济学等科学领域以及社会化生产中得到广因此在医学、心理学、经济学等科学领域以及社会化生产中得到广泛的应用。泛的应用。主成分分析与因子分析的概念(续)由于实测的变量
4、间存在一定的相关关系,由于实测的变量间存在一定的相关关系,因此有可能用较少数的综合指标分别综合因此有可能用较少数的综合指标分别综合存在于各变量中的各类信息,而综合指标存在于各变量中的各类信息,而综合指标之间彼此不相关,即各指标代表的信息不之间彼此不相关,即各指标代表的信息不重叠。综合指标称为因子或主成分(提取重叠。综合指标称为因子或主成分(提取几个因子),一般有两种方法:几个因子),一般有两种方法:w特征值特征值1w累计贡献率累计贡献率0.8汇报什么?汇报什么?假定你是一个公司的财务经理,掌握了公司的所有数据,比如固定资产、流动资金、每一笔借贷的数额和期限、各种税费、工资支出、原料消耗、产值、
5、利润、折旧、职工人数、职工的分工和教育程度等等。如果让你向上面介绍公司状况,你能够把这些指标和数字都原封不动地摆出去吗?当然不能。你必须要把各个方面作出高度概括,用一两个指标简单明了地把情况说清楚。主成分分析主成分分析每个人都会遇到有很多变量的数据。比如全国或各个地区的带有许多经济和社会变量的数据;各个学校的研究、教学等各种变量的数据等等。这些数据的共同特点是变量很多,在如此多的变量之中,有很多是相关的。人们希望能够找出它们的少数“代表”来对它们进行描述。本章就介绍两种把变量维数降低以便于描述、理解和分析的方法:主成分分析(principal component analysis)和因子分析(
6、factor analysis)。实际上主成分分析可以说是因子分析的一个特例。在引进主成分分析之前,先看下面的例子。成绩数据(成绩数据(student.sav)100个学生的数学、物理、化学、语文、历史、英语的成绩如下表(部分)。从本例可能提出的问题从本例可能提出的问题目前的问题是,能不能把这个数据的6个变量用一两个综合变量来表示呢?这一两个综合变量包含有多少原来的信息呢?能不能利用找到的综合变量来对学生排序呢?这一类数据所涉及的问题可以推广到对企业,对学校进行分析、排序、判别和分类等问题。主成分分析主成分分析例中的的数据点是六维的;也就是说,每个观测值是6维空间中的一个点。我们希望把6维空间
7、用低维空间表示。先假定只有二维,即只有两个变量,它们由横坐标和纵坐标所代表;因此每个观测值都有相应于这两个坐标轴的两个坐标值;如果这些数据形成一个椭圆形状的点阵(这在变量的二维正态的假定下是可能的)那么这个椭圆有一个长轴和一个短轴。在短轴方向上,数据变化很少;在极端的情况,短轴如果退化成一点,那只有在长轴的方向才能够解释这些点的变化了;这样,由二维到一维的降维就自然完成了。主成分分析主成分分析当坐标轴和椭圆的长短轴平行,那么代表长轴的变量就描述了数据的主要变化,而代表短轴的变量就描述了数据的次要变化。但是,坐标轴通常并不和椭圆的长短轴平行。因此,需要寻找椭圆的长短轴,并进行变换,使得新变量和椭
8、圆的长短轴平行。如果长轴变量代表了数据包含的大部分信息,就用该变量代替原先的两个变量(舍去次要的一维),降维就完成了。椭圆(球)的长短轴相差得越大,降维也越有道理。主成分分析主成分分析对于多维变量的情况和二维类似,也有高维的椭球,只不过无法直观地看见罢了。首先把高维椭球的主轴找出来,再用代表大多数数据信息的最长的几个轴作为新变量;这样,主成分分析就基本完成了。注意,和二维情况类似,高维椭球的主轴也是互相垂直的。这些互相正交的新变量是原先变量的线性组合,叫做主成分(principalcomponent)。主成分分析主成分分析正如二维椭圆有两个主轴,三维椭球有三个主轴一样,有几个变量,就有几个主成
9、分。选择越少的主成分,降维就越好。什么是标准呢?那就是这些被选的主成分所代表的主轴的长度之和占了主轴长度总和的大部分。有些文献建议,所选的主轴总长度占所有主轴长度之和的大约85%即可,其实,这只是一个大体的说法;具体选几个,要看实际情况而定。对于我们的数据,对于我们的数据,SPSSSPSS输出为输出为这这里里的的Initial Eigenvalues就就是是这这里里的的六六个个主主轴轴长长度度,又又称称特特征征值值(数数据据相相关关阵阵的的特特征征值值)。头头两两个个成成分分特特征征值值累累积积占占了了总总方方差差的的81.142%。后后面面的的特特征征值值的的贡贡献献越越来来越越少。少。特征
10、值的贡献还可以从特征值的贡献还可以从SPSS的所谓碎石图看出的所谓碎石图看出怎么解释这两个主成分。前面说过主成分怎么解释这两个主成分。前面说过主成分是原始六个变量的线性组合。是怎么样的是原始六个变量的线性组合。是怎么样的组合呢?组合呢?SPSSSPSS可以可以输出下面的表。输出下面的表。这这里里每每一一列列代代表表一一个个主主成成分分作作为为原原来来变变量量线线性性组组合合的的系系数数(比比例例)。比比如如第第一一主主成成分分作作为为数数学学、物物理理、化化学学、语语文文、历历史史、英英语语这这六六个个原原先先变变量量的的线线性性组组合合,系系数数(比比例例)为为-0.806,-0.674,-
11、0.675,0.893,0.825,0.836。如如 用用x x1 1,x x2 2,x x3 3,x x4 4,x x5 5,x x6 6分分 别别 表表 示示 原原 先先 的的 六六 个个 变变 量量,而而 用用y y1 1,y y2 2,y y3 3,y y4 4,y y5 5,y y6 6表表示示新新的的主主成成分分,那那么么,原原先先六六个个变变量量x x1 1,x x2 2,x x3 3,x x4 4,x x5 5,x x6 6与第一和第二主成分与第一和第二主成分y y1 1,y y2 2的关系为:的关系为:X X1 1=-0.806=-0.806y y1 1+0.353y+0.3
12、53y2 2X X2 2=-0.674=-0.674y y1 1+0.531y+0.531y2 2X X3 3=-0.675=-0.675y y1 1+0.513y+0.513y2 2X X4 4=0.893=0.893y y1 1+0.306y+0.306y2 2x x5 5=0.825=0.825y y1 1+0.435y+0.435y2 2x x6 6=0.836=0.836y y1 1+0.425y+0.425y2 2这这些些系系数数称称为为主主成成分分载载荷荷(loading),它它表表示示主主成成分分和和相相应应的的原先变量的相关系数。原先变量的相关系数。比比如如x1表表示示式式中
13、中y1的的系系数数为为-0.806,这这就就是是说说第第一一主主成成分分和和数数学变量的相关系数为学变量的相关系数为-0.806。相相关关系系数数(绝绝对对值值)越越大大,主主成成分分对对该该变变量量的的代代表表性性也也越越大大。可可以以看看得得出出,第第一一主主成成分分对对各各个个变变量量解解释释得得都都很很充充分分。而而最最后后的几个主成分和原先的变量就不那么相关了。的几个主成分和原先的变量就不那么相关了。可以把第一和第二主成分的载荷点出可以把第一和第二主成分的载荷点出一个二维图以直观地显示它们如何解一个二维图以直观地显示它们如何解释原来的变量的。这个图叫做载荷图。释原来的变量的。这个图叫
14、做载荷图。该图该图左面三个点是数学、物理、化学三科左面三个点是数学、物理、化学三科,右边三个点右边三个点是语文、历史、外语三科。是语文、历史、外语三科。图中的六个点由于比较挤,图中的六个点由于比较挤,不易分清,但只要认识到这些点的坐标是前面的第一二不易分清,但只要认识到这些点的坐标是前面的第一二主成分载荷,坐标是前面表中第一二列中的数目,还是主成分载荷,坐标是前面表中第一二列中的数目,还是可以识别的。可以识别的。因子分析因子分析主成分分析从原理上是寻找椭球的所有主轴。因此,原先有几个变量,就有几个主成分。而因子分析是事先确定要找几个成分,这里叫因子(factor)(比如两个),那就找两个。这使
15、得在数学模型上,因子分析和主成分分析有不少区别。而且因子分析的计算也复杂得多。根据因子分析模型的特点,它还多一道工序:因子旋转(factorrotation);这个步骤可以使结果更好。当然,对于计算机来说,因子分析并不比主成分分析多费多少时间。从输出的结果来看,因子分析也有因子载荷(factorloading)的概念,代表了因子和原先变量的相关系数。但是在输出中的因子和原来变量相关系数的公式中的系数不是因子载荷,也给出了二维图;该图虽然不是载荷图,但解释和主成分分析的载荷图类似。主成分分析与因子分析的公式上的区别主成分分析与因子分析的公式上的区别主成分分析主成分分析 P312因子分析因子分析(
16、mp)P314因子得分因子得分 P315对于我们的数据,对于我们的数据,SPSSSPSS因子分析输出为因子分析输出为这里,这里,第一个因子主要和语文、历史、英语三科有很强的第一个因子主要和语文、历史、英语三科有很强的正相关;正相关;而第二个因子主要和数学、物理、化学三科有很而第二个因子主要和数学、物理、化学三科有很强的正相关强的正相关。因此可以给第一个因子起名为。因此可以给第一个因子起名为“文科因子文科因子”,而给第二个因子起名为,而给第二个因子起名为“理科因子理科因子”。从这个例子可以。从这个例子可以看出,因子分析的结果比主成分分析解释性更强。看出,因子分析的结果比主成分分析解释性更强。这这
17、两两个个因因子子的的系系数数所所形形成成的的散散点点图图(虽虽然然不是载荷,在不是载荷,在SPSS中也称载荷图,中也称载荷图,可以直观看出每个因子代表了一类学科可以直观看出每个因子代表了一类学科 计算因子得分计算因子得分可以根据前面的因子得分公式(因子得分系数和原始变量的标准化值的乘积之和),算出每个学生的第一个因子和第二个因子的大小,即算出每个学生的因子得分f1和f2。人们可以根据这两套因子得分对学生分别按照文科和理科排序。当然得到因子得分只是SPSS软件的一个选项(可将因子得分存为新变量、显示因子得分系数矩阵)因子分析和主成分分析的一些注意事项因子分析和主成分分析的一些注意事项 可以看出,
18、因子分析和主成分分析都依赖于原始变量,也只能反映原始变量的信息。所以原始变量的选择很重要。另外,如果原始变量都本质上独立,那么降维就可能失败,这是因为很难把很多独立变量用少数综合的变量概括。数据越相关,降维效果就越好。在得到分析的结果时,并不一定会都得到如我们例子那样清楚的结果。这与问题的性质,选取的原始变量以及数据的质量等都有关系在用因子得分进行排序时要特别小心,特别是对于敏感问题。由于原始变量不同,因子的选取不同,排序可以很不一样。SPSSSPSS实现实现(因子分析与主成分分析因子分析与主成分分析)拿student.sav为例,选AnalyzeDataReductionFactor进入主对
19、话框;把math、phys、chem、literat、history、english选入Variables,然后点击Extraction,在Method选择一个方法(如果是主成分分析,则选PrincipalComponents),下面的选项可以随意,比如要画碎石图就选Screeplot,另外在Extract选项可以按照特征值的大小选主成分(或因子),也可以选定因子的数目;之后回到主对话框(用Continue)。然后点击Rotation,再在该对话框中的Method选择一个旋转方法(如果是主成分分析就选None),在Display选Rotatedsolution(以输出和旋转有关的结果)和Loadingplot(以输出载荷图);之后回到主对话框(用Continue)。如果要计算因子得分就要点击Scores,再选择Saveasvariables(因子得分就会作为变量存在数据中的附加列上)和计算因子得分的方法(比如Regression);之后回到主对话框(用Continue)。这时点OK即可。