高二数学知识点归纳总结2021.docx

上传人:1107088****qq.com 文档编号:67501554 上传时间:2022-12-24 格式:DOCX 页数:6 大小:40.04KB
返回 下载 相关 举报
高二数学知识点归纳总结2021.docx_第1页
第1页 / 共6页
高二数学知识点归纳总结2021.docx_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《高二数学知识点归纳总结2021.docx》由会员分享,可在线阅读,更多相关《高二数学知识点归纳总结2021.docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高二数学知识点归纳总结2021高二数学知识点归纳总结1(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=nnA为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A

2、)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值nnA,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率。高二数学知识点归纳总结2一、直线与圆:1、直线的倾斜角的范围是在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或平行时,规

3、定倾斜角为0;2、斜率:已知直线的倾斜角为,且90,则斜率k=tan.过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。3、直线方程:点斜式:直线过点斜率为,则直线方程为,斜截式:直线在轴上的截距为和斜率,则直线方程为4、直线与直线的位置关系:(1)平行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=05、点到直线的距离公式;两条平行线与的距离是6、圆的标准方程:.圆的一般方程:注意能将标准方程化为一般方程7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.8、直线与圆的位置关系,通常

4、转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.相离相切相交9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长二、圆锥曲线方程:1、椭圆:方程(ab0)注意还有一个;定义:|PF1|+|PF2|=2a2c;e=长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2;2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b23、抛物线:方程y2=2px注意还有三个,能区别开口方向;定义:|PF|=d焦点F(,0),准线x=-;焦半径;焦点弦=x1+x2+p;4、直线被圆锥曲线截得的弦长公式:三、直线、

5、平面、简单几何体:1、学会三视图的分析:2、斜二测画法应注意的地方:(1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴ox、oy、使xoy=45(或135);(2)平行于x轴的线段长不变,平行于y轴的线段长减半.(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.3、表(侧)面积与体积公式:柱体:表面积:S=S侧+2S底;侧面积:S侧=;体积:V=S底h锥体:表面积:S=S侧+S底;侧面积:S侧=;体积:V=S底h:台体表面积:S=S侧+S上底S下底侧面积:S侧=球体:表面积:S=;体积:V=4、位置关系的证明(主要方法):注意立体几何证明的书写(1

6、)直线与平面平行:线线平行线面平行;面面平行线面平行。(2)平面与平面平行:线面平行面面平行。(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线5、求角:(步骤.找或作角;.求角)异面直线所成角的求法:平移法:平移直线,构造三角形;直线与平面所成的角:直线与射影所成的角四、导数:导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)1、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0)切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。3.常见函数的导数公式:;

7、。4.导数的四则运算法则:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。(2)求极值的步骤:求导数;求方程的根;列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:求的根;把根与区间端点函数值比较,的为值,最小的是最小值。五、常用逻辑用语:1、四种命题:原命题:若p则q;逆命题:若q则p;否命题:若p则q;逆否命题:若q则p注:1、原命题与逆否命题等价;逆命题与否命题等价。

8、判断命题真假时注意转化。2、注意命题的否定与否命题的区别:命题否定形式是;否命题是.命题“或”的否定是“且”;“且”的否定是“或”.3、逻辑联结词:且(and):命题形式pq;pqpqpqp或(or):命题形式pq;真真真真假非(not):命题形式p.真假假真假假真假真真假假假假真“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”4、充要条件由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。5、全称命题与特称命题:短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并

9、用符号表示。含有全体量词的命题,叫做全称命题。短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号表示,含有存在量词的命题,叫做存在性命题。高二数学知识点归纳总结3导数是微积分中的重要基础概念。当函数=f(x)的自变量x在一点x0上产生一个增量x时,函数输出值的增量与自变量增量x的比值在x趋于0时的极限a如果存在,a即为在x0处的导数,记作f(x0)或df(x0)/dx。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线

10、斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。对于可导的函数f(x),xf(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。设函数=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量x,(x0+x)也在该邻域内时,相应地函数取得增量=f(x0+x)-f(x0);如果与x之比当x0时极限存在,则称函数=f(x)在点x0处可导,并称这个极限为函数=f(x)在点x0处的导数记为f(x0),也记

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 研究报告 > 其他报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁