《高三年级关键数学必修一知识点2021.docx》由会员分享,可在线阅读,更多相关《高三年级关键数学必修一知识点2021.docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高三年级关键数学必修一知识点2021高三年级数学必修一知识点11.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,构成数列:-1,1,-1,1,.(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数
2、是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而2,3,4,5,6中元素不论按怎样的次序排列都是同一个集合.2.数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,或1,3,5,7,9,2n-1,它就表示无穷数列.(2)按
3、照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真
4、正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.再强调对于数列通项公式的理解注意以下几点:(1)数列的通项公式实际上是一个以正整数集N_或它的有限子集1,2,n为定义域的函数的表达式.(2)如果知道了数列的通项公式,那么依次用1,2,3,去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,所构成的数列1,1.4,1.41,1.414,1.4142,就没有通项公式
5、.(4)有的数列的通项公式,形式上不一定是的,正如举例中的:(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.4.数列的图象对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:序号:1234567项:45678910这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N_(或它的有限子集1,2,3,n)的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.由于数列的项是函数值,序号是自变量,数列的通项公式
6、也就是相应函数和解析式.数列是一种特殊的函数,数列是可以用图象直观地表示的.数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.5.递推数列一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10.数列还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管
7、数多1。【同步练习题】1.已知数列an中,an=n2+n,则a3等于()A.3B.9C.12D.20答案:C2.下列数列中,既是递增数列又是无穷数列的是()A.1,12,13,14,B.-1,-2,-3,-4,C.-1,-12,-14,-18,D.1,2,3,n解析:选C.对于A,an=1n,nN_,它是无穷递减数列;对于B,an=-n,nN_,它也是无穷递减数列;D是有穷数列;对于C,an=-(12)n-1,它是无穷递增数列.3.下列说法不正确的是()A.根据通项公式可以求出数列的任何一项B.任何数列都有通项公式C.一个数列可能有几个不同形式的通项公式D.有些数列可能不存在项解析:选B.不是
8、所有的数列都有通项公式,如0,1,2,1,0,.4.数列23,45,67,89,的第10项是()A.1617B.1819C.2021D.2223解析:选C.由题意知数列的通项公式是an=2n2n+1,a10=210210+1=2021.故选C.5.已知非零数列an的递推公式为an=nn-1an-1(n1),则a4=()A.3a1B.2a1C.4a1D.1解析:选C.依次对递推公式中的n赋值,当n=2时,a2=2a1;当n=3时,a3=32a2=3a1;当n=4时,a4=43a3=4a1.高三年级数学必修一知识点21.不等式的定义在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接
9、两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.2.比较两个实数的大小两个实数的大小是用实数的运算性质来定义的,有a-b0;a-b=0;a-b0,则有1;=1;b;(2)传递性:ab,bc;(3)可加性:aba+cb+c,ab,cda+cb+d;(4)可乘性:ab,c0acbc;ab0,cd0;(5)可乘方:ab0(nN,n2);(6)可开方:ab0(nN,n2).复习指导1.“一个技巧”作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.“一种方法”待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质
10、求出目标式的范围.“两条常用性质”(1)倒数性质:ab,ab0;ab0,0;0(2)若ab0,m0,则真分数的性质:(b-m0);假分数的性质:;0).高三年级数学必修一知识点31.满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),称为二元一次不等式(组)的一个解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集。2.二元一次不等式(组)的每一个解(x,y)作为点的坐标对应平面上的一个点,二元一次不等式(组)的解集对应平面直角坐标系中的一个半平面(平面区域)。3.直线l:Ax+By+C=0(A、B不全为零)把坐标平面划分成两部分,其中一部分(半个平面)对应二元一
11、次不等式Ax+By+C0(或0),另一部分对应二元一次不等式Ax+By+C0所表示的平面区域时,应把边界画成虚线。8.若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的同侧,则Ax0+By0+C与Ax1+Byl+C符号相同;若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的两侧,则Ax0+By0+C与Ax1+Byl+C符号相反。9.从实际问题中抽象出二元一次不等式(组)的步骤是:(1)根据题意,设出变量;(2)分析问题中的变量,并根据各个不等关系列出常量与变量x,y之间的不等式;(3)把各个不等式连同变量x,y有意义的实际范围合在一起,组成不等式组。