高一年级数学知识点解析大全.docx

上传人:有**** 文档编号:67436801 上传时间:2022-12-24 格式:DOCX 页数:3 大小:37.28KB
返回 下载 相关 举报
高一年级数学知识点解析大全.docx_第1页
第1页 / 共3页
高一年级数学知识点解析大全.docx_第2页
第2页 / 共3页
点击查看更多>>
资源描述

《高一年级数学知识点解析大全.docx》由会员分享,可在线阅读,更多相关《高一年级数学知识点解析大全.docx(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高一年级数学知识点解析大全定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。范围:倾斜角的取值范围是00时(0,90)k0时(90,180)k=0时=0当=90时k不存在ax+by+c=0(a0)倾斜角为A,则tanA=-a/b,A=arctan(-a/b)当a0时,倾斜角为90度,即与X轴垂直高一年级数学知识点汇总1、圆柱体:表面积:2Rr+2Rh体积:R2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:R2+R(h2+R2)的体积:R2h/3(r为圆锥体低圆半径,h为其高,3、a-边长,S=6a2,V=a34、

2、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-h-高V=Sh6、棱锥S-h-高V=Sh/37、S1和S2-上、下h-高V=hS1+S2+(S1S2)1/2/38、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C底面周长S底底面积,S侧,S表表面积C=2rS底=r2,S侧=Ch,S表=Ch+2S底,V=S底h=r2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=h(R2-r2)11、r-底半径h-高V=r2h/312、r-上底半径,R-下底半径,h-高V=h(R2+Rr+r2)/313、球r-半径d-

3、直径V=4/3r3=d3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=h(3a2+h2)/6=h2(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=h3(r12+r22)+h2/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=22Rr2=2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=h(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=h(2D2+Dd+3d2/4)/15(母线是抛物线形)高一年级数学知识点梳理空间几何体表面积体积公式:1、圆柱体:表面积:2Rr+2Rh体积:R2h(R为圆柱体上下底圆半径,h为圆柱体高)2

4、、圆锥体:表面积:R2+R(h2+R2)的体积:R2h/3(r为圆锥体低圆半径,h为其高,3、a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-h-高V=Sh6、棱锥S-h-高V=Sh/37、S1和S2-上、下h-高V=hS1+S2+(S1S2)1/2/38、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C底面周长S底底面积,S侧,S表表面积C=2rS底=r2,S侧=Ch,S表=Ch+2S底,V=S底h=r2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=h(R2-r2)11、r-底半径h-高V=r2h/312、r-上底半径,R-下底半径,h-高V=h(R2+Rr+r2)/313、球r-半径d-直径V=4/3r3=d3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=h(3a2+h2)/6=h2(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=h3(r12+r22)+h2/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=22Rr2=2Dd2/4

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁