高一年级数学下学期知识点解读2021.docx

上传人:有**** 文档编号:67435223 上传时间:2022-12-24 格式:DOCX 页数:4 大小:38.64KB
返回 下载 相关 举报
高一年级数学下学期知识点解读2021.docx_第1页
第1页 / 共4页
高一年级数学下学期知识点解读2021.docx_第2页
第2页 / 共4页
点击查看更多>>
资源描述

《高一年级数学下学期知识点解读2021.docx》由会员分享,可在线阅读,更多相关《高一年级数学下学期知识点解读2021.docx(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高一年级数学下学期知识点解读2021高一年级数学下学期知识点1对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是0,+)。当指数n是负整数时,设a=-k,则x=1/(xk),显然x0,函数的定义域是(-,0)(0,+).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x0,则a可以是任意实数;排除了为0这种可能,即对于x0的所有实

2、数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。由于x大于0是对a的任意取值都有意义的,因此下

3、面给出幂函数在第一象限的各自情况.可以看到:(1)所有的图形都通过(1,1)这点。(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。(4)当a小于0时,a越小,图形倾斜程度越大。(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。(6)显然幂函数无界。高一年级数学下学期知识点2如果直线a与平面平行,那么直线a与平面内的直线有哪些位置关系?平行或异面。若直线a与平面平行,那么在平面内与直线a平行的直线有多少条?这些直线的位置关系如何?无数条;平行。如果直线a与平面平行,经过直线a的平面

4、与平面相交于直线b,那么直线a、b的位置关系如何?为什么?平行;因为a,所以a与没有公共点,则a与b没有公共点,又a与b在同一平面内,所以a与b平行。综上分析,在直线a与平面平行的条件下我们可以得到什么结论?如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。高一年级数学下学期知识点31.函数的奇偶性。(1)若f(x)是偶函数,那么f(x)=f(-x)。(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数)。(3)判断函数奇偶性可用定义的等价形式:f(x)f(-x)=0或(f(x)0)。(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性。(5

5、)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性。2.复合函数的有关问题。(1)复合函数定义域求法:若已知的定义域为a,b,其复合函数fg(x)的定义域由不等式ag(x)b解出即可;若已知fg(x)的定义域为a,b,求f(x)的定义域,相当于xa,b时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。(2)复合函数的单调性由“同增异减”判定。3.函数图像(或方程曲线的对称性)。(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上。(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(

6、对称轴)的对称点仍在C2上,反之亦然。(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0。(5)若函数y=f(x)对xR时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称。4.函数的周期性。(1)y=f(x)对xR时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,则y=f(x)是周期为2a的周期函数。(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,

7、则f(x)是周期为2a的周期函数。(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4a的周期函数。(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数。5.判断对应是否为映射时,抓住两点。(1)A中元素必须都有象且。(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象。6.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。7.对于反函数,应掌握以下一些结论。(1)定义域上的单调函数必有反函数。(2)奇函数的反函数也是奇函数。(3)定义域为非单元素集的偶函数不存在反函数。(4)周期函数不存在反函数。(5)互为反函数的两个函数具有相同的单调性。(6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有ff-1(x)=x(xB),f-1f(x)=x(xA)。8.处理二次函数的问题勿忘数形结合。二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系。9.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题。10.恒成立问题的处理方法。(1)分离参数法。(2)转化为一元二次方程的根的分布列不等式(组)求解。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁