教育专题:263实际问题与二次函数(1)(1).ppt

上传人:s****8 文档编号:67343123 上传时间:2022-12-24 格式:PPT 页数:19 大小:546KB
返回 下载 相关 举报
教育专题:263实际问题与二次函数(1)(1).ppt_第1页
第1页 / 共19页
教育专题:263实际问题与二次函数(1)(1).ppt_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《教育专题:263实际问题与二次函数(1)(1).ppt》由会员分享,可在线阅读,更多相关《教育专题:263实际问题与二次函数(1)(1).ppt(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、说出抛物线的开口方向、对称轴、顶说出抛物线的开口方向、对称轴、顶点,最大值或最小值。点,最大值或最小值。y=2(x-3)2+3y=x2+4x-1-202462-4xy若若3x3,该函数的最,该函数的最大值、最小值分别为大值、最小值分别为()、()、()。)。又若又若0 x3,该函数的,该函数的最大值、最小值分别为(最大值、最小值分别为()、()、()。)。求函数的最值问题,应注意什么求函数的最值问题,应注意什么?55 555 132、图中所示的二次函数图像的、图中所示的二次函数图像的解析式为:解析式为:1 1、求下列二次函数的最大值或最小值:、求下列二次函数的最大值或最小值:y=x22x3;y

2、=x24x 某商品现在的售价为每件某商品现在的售价为每件60元,每星期可卖出元,每星期可卖出300件,市件,市场调查反映:每涨价场调查反映:每涨价1元,每元,每星期少卖出星期少卖出10件;每降价件;每降价1元,元,每星期可多卖出每星期可多卖出18件,已知件,已知商品的进价为每件商品的进价为每件40元,如元,如何定价才能使利润最大?何定价才能使利润最大?请大家带着以下几个问题读题请大家带着以下几个问题读题(1)题目中有几种调整价格的方法?)题目中有几种调整价格的方法?(2)题目涉及到哪些变量?哪一个量是自变量)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?哪些量随之发生了变化?某商

3、品现在的售价为每件某商品现在的售价为每件60元,每星期元,每星期可卖出可卖出300件,市场调查反映:每涨价件,市场调查反映:每涨价1元,每星期少卖出元,每星期少卖出10件;每降价件;每降价1元,每元,每星期可多卖出星期可多卖出18件,已知商品的进价为件,已知商品的进价为每件每件40元,如何定价才能使利润最大?元,如何定价才能使利润最大?分析分析:调整价格包括涨价和降价两种情况调整价格包括涨价和降价两种情况先来看涨价的情况:先来看涨价的情况:设每件涨价设每件涨价x元,则每星期售出商元,则每星期售出商品的利润品的利润y也随之变化,我们先来确定也随之变化,我们先来确定y与与x的函数关系式。的函数关系

4、式。涨价涨价x元时则每星期少卖元时则每星期少卖 件,实际卖出件,实际卖出 件件,销销额为额为 元,买进商品需付元,买进商品需付 元因因此,所得利润为此,所得利润为元元10 x(300-10 x)(60+x)(300-10 x)40(300-10 x)y=(60+x)(300-10 x)-40(300-10 x)即即(0X30)(0X30)可以看出,这个函数的可以看出,这个函数的图像是一条抛物线的一图像是一条抛物线的一部分,这条抛物线的顶部分,这条抛物线的顶点是函数图像的最高点,点是函数图像的最高点,也就是说当也就是说当x取顶点坐取顶点坐标的横坐标时,这个函标的横坐标时,这个函数有最大值。由公式

5、可数有最大值。由公式可以求出顶点的横坐标以求出顶点的横坐标.所以,当定价为所以,当定价为65元时,利润最大,最大利润为元时,利润最大,最大利润为6250元元在降价的情况下,最大利润是多少?在降价的情况下,最大利润是多少?请你参考请你参考(1)的过程得出答案。的过程得出答案。解:设降价解:设降价x元时利润最大,则每星期可多卖元时利润最大,则每星期可多卖18x件,实件,实际卖出(际卖出(300+18x)件,销售额为件,销售额为(60-x)(300+18x)元,元,买进商品需付买进商品需付40(300-10 x)元,因此,得利润元,因此,得利润答:定价为答:定价为 元时,利润最大,最大利润为元时,利

6、润最大,最大利润为6050元元 做一做做一做由由(1)(2)的讨论及现在的销的讨论及现在的销售情况售情况,你知道应该如何定价你知道应该如何定价能使利润最大了吗能使利润最大了吗?(0 x20)归纳小结归纳小结:运用二次函数的性质求实际问题的最大值和最小值运用二次函数的性质求实际问题的最大值和最小值的一般步骤的一般步骤 :求出函数解析式和自变量的取值范围求出函数解析式和自变量的取值范围配方变形,或利用公式求它的最大值或最小值。配方变形,或利用公式求它的最大值或最小值。检查求检查求得的最大值或最小值对应的自变量的值必得的最大值或最小值对应的自变量的值必须在自变量的取值范围内须在自变量的取值范围内 。

7、某商场销售某种品牌的纯牛奶,已知进价某商场销售某种品牌的纯牛奶,已知进价为每箱为每箱4040元,市场调查发现:若每箱以元,市场调查发现:若每箱以50 50 元元销售销售,平均每天可销售平均每天可销售100100箱箱.价格每箱降低价格每箱降低1 1元,平均每天多销售元,平均每天多销售2525箱箱 ;价格每箱升高价格每箱升高1 1元,平均每天少销售元,平均每天少销售4 4箱。如何定价才能使得箱。如何定价才能使得利润最大?利润最大?练一练练一练若生产厂家要求每箱售价在若生产厂家要求每箱售价在4555元之间。元之间。如何定价才能使得利润最大?(为了便于计如何定价才能使得利润最大?(为了便于计算,要求每

8、箱的价格为整数)算,要求每箱的价格为整数)有一经销商,按市场价收购了一种活蟹有一经销商,按市场价收购了一种活蟹1000千克,千克,放养在塘内,此时市场价为每千克放养在塘内,此时市场价为每千克30元。据测算,此后元。据测算,此后每千克活蟹的市场价,每天可上升每千克活蟹的市场价,每天可上升1元,但是,放养一天元,但是,放养一天需各种费用支出需各种费用支出400元,且平均每天还有元,且平均每天还有10千克蟹死去,千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克假定死蟹均于当天全部售出,售价都是每千克20元(放元(放养期间蟹的重量不变)养期间蟹的重量不变).设设x天后每千克活蟹市场价为天后每千克活

9、蟹市场价为P元,写出元,写出P关于关于x的函数的函数关系式关系式.如果放养如果放养x天将活蟹一次性出售,并记天将活蟹一次性出售,并记1000千克蟹的销千克蟹的销售总额为售总额为Q元,写出元,写出Q关于关于x的函数关系式。的函数关系式。该经销商将这批蟹放养多少天后出售,可获最大利润,该经销商将这批蟹放养多少天后出售,可获最大利润,(利润(利润=销售总额销售总额-收购成本收购成本-费用)?最大利润是多少?费用)?最大利润是多少?解:解:由题意知由题意知:P=30+x.由题意知:死蟹的销售额为由题意知:死蟹的销售额为200 x元,元,活蟹的销售额为(活蟹的销售额为(30+x)()(1000-10 x

10、)元。元。驶向胜利的彼岸Q=(30+x)(1000-10 x)+200 x=-10 x2+900 x+30000设总利润为设总利润为W=Q-30000-400 x=-10 x2+500 x =-10(x-25)2+6250当当x=25时,总利润最大,最大利润为时,总利润最大,最大利润为6250元。元。x(元元)152030y(件件)252010 若日销售量若日销售量 y 是销售价是销售价 x 的一次函数。的一次函数。(1)求出日销售量)求出日销售量 y(件)与销售价件)与销售价 x(元)的函元)的函数关系式;(数关系式;(6分)分)(2)要使每日的销售利润)要使每日的销售利润最大最大,每件产品

11、的销售价,每件产品的销售价应定为多少元?此时每日销售利润是多少元?(应定为多少元?此时每日销售利润是多少元?(6分)分)某产品每件成本某产品每件成本10元,试销阶段每件产品的销售价元,试销阶段每件产品的销售价 x(元)与产品的日销售量元)与产品的日销售量 y(件)之间的关系如下表:件)之间的关系如下表:(2)设每件产品的销售价应定为)设每件产品的销售价应定为 x 元,所获销售利润元,所获销售利润为为 w 元。则元。则 产品的销售价应定为产品的销售价应定为25元,此时每日获得最大销售利元,此时每日获得最大销售利润为润为225元。元。则则解得:解得:k=1,b40。1分5分6分7分10分12分(1

12、)设此一次函数解析式为)设此一次函数解析式为 。所以一次函数解析为所以一次函数解析为 。w设旅行团人数为设旅行团人数为x人人,营业额为营业额为y y元元,则则旅行社何时营业额旅行社何时营业额最大最大w1.1.某旅行社组团去外地旅游某旅行社组团去外地旅游,30,30人起组团人起组团,每人单价每人单价800800元元.旅行社对超过旅行社对超过3030人的团给予优惠人的团给予优惠,即旅行团每增即旅行团每增加一人加一人,每人的单价就降低每人的单价就降低1010元元.你能帮助分析一下你能帮助分析一下,当当旅行团的人数是多少时旅行团的人数是多少时,旅行社可以获得最大营业额?旅行社可以获得最大营业额?某宾馆

13、有某宾馆有50个房间供游客居住,当每个个房间供游客居住,当每个房间的定价为每天房间的定价为每天180元时,房间会全部住元时,房间会全部住满。当每个房间每天的定价每增加满。当每个房间每天的定价每增加10元时,元时,就会有一个房间空闲。如果游客居住房间,就会有一个房间空闲。如果游客居住房间,宾馆需对每个房间每天支出宾馆需对每个房间每天支出20元的各种费用元的各种费用.房价定为多少时,宾馆利润最大?房价定为多少时,宾馆利润最大?解:设每个房间每天增加解:设每个房间每天增加x元,宾馆的利润为元,宾馆的利润为y元元Y=(50-x/10)(180+x)-20(50-x/10)Y=-1/10 x2+34x+

14、80001.某商场销售一批名牌衬衫,平均每天可售出某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利件,每件盈利40元,为了扩大销售,增加元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的盈利,尽快减少库存,商场决定采取适当的降价措施。经调查发现,如果每件衬衫每降降价措施。经调查发现,如果每件衬衫每降价价1元,商场平均每天可多售出元,商场平均每天可多售出2件。件。(1)若商场平均每天要盈利)若商场平均每天要盈利1200元,每件衬衫元,每件衬衫应降价多少元?应降价多少元?(2)每件衬衫降价多少元时,商场平均每天盈)每件衬衫降价多少元时,商场平均每天盈利最多?利最多?(三)(三)销售

15、问题2.2.某商场以每件某商场以每件4242元的价钱购进一种服装,根据试元的价钱购进一种服装,根据试销得知这种服装每天的销售量销得知这种服装每天的销售量t t(件)与每件的件)与每件的销售价销售价x x(元(元/件)可看成是一次函数关系:件)可看成是一次函数关系:t t3x3x204204。(1 1).写出商场卖这种服装每天销售利润写出商场卖这种服装每天销售利润 y y(元)与每件的销售价(元)与每件的销售价x x(元)间的函元)间的函 数关系式;数关系式;(2 2).通过对所得函数关系式进行配方,指出通过对所得函数关系式进行配方,指出 商场要想每天获得最大的销售利润,每件的销商场要想每天获得

16、最大的销售利润,每件的销售价定为多少最为合适?最大利润为多少?售价定为多少最为合适?最大利润为多少?(三)(三)销售问题销售问题 某个商店的老板,他最近进了价格为某个商店的老板,他最近进了价格为3030元的元的书包。起初以书包。起初以4040元每个售出,平均每个月能售元每个售出,平均每个月能售出出200200个。后来,根据市场调查发现:这种书包个。后来,根据市场调查发现:这种书包的售价每上涨的售价每上涨1 1元,每个月就少卖出元,每个月就少卖出1010个。现在个。现在请你帮帮他,请你帮帮他,如何定价才使他的利润最大如何定价才使他的利润最大?某个商店的老板,他最近进了价格为某个商店的老板,他最近进了价格为3030元的元的书包。起初以书包。起初以4040元每个售出,平均每个月能售出元每个售出,平均每个月能售出200200个。后来,根据市场调查发现:这种书包的个。后来,根据市场调查发现:这种书包的售价每上涨售价每上涨1 1元,每个月就少卖出元,每个月就少卖出1010个。现在请个。现在请你帮帮他,你帮帮他,如何定价才使他的利润达到如何定价才使他的利润达到21602160元元?

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁