lingo优化实例教程.ppt

上传人:s****8 文档编号:67331995 上传时间:2022-12-24 格式:PPT 页数:80 大小:1.01MB
返回 下载 相关 举报
lingo优化实例教程.ppt_第1页
第1页 / 共80页
lingo优化实例教程.ppt_第2页
第2页 / 共80页
点击查看更多>>
资源描述

《lingo优化实例教程.ppt》由会员分享,可在线阅读,更多相关《lingo优化实例教程.ppt(80页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、数学建模讲座(数学建模讲座(2005年年8月月2日日 北戴河)北戴河)优化建模与优化建模与LINDO/LINGO优化软件优化软件谢金星谢金星清华大学数学科学系清华大学数学科学系Tel:010-62787812Email:http:/ 1.优化模型与优化软件简介优化模型与优化软件简介2.LINDO公司的主要软件产品及功能简介公司的主要软件产品及功能简介3.LINDO/LINGO软件的使用简介软件的使用简介4.建模与求解实例(结合软件使用)建模与求解实例(结合软件使用)1.优化模型与优化软件简介优化模型与优化软件简介最优化是工程技术、经济管理、科学研究、最优化是工程技术、经济管理、科学研究、社会生

2、活中经常遇到的问题社会生活中经常遇到的问题,如如:优化模型和优化软件的重要意义优化模型和优化软件的重要意义结构设计结构设计资源分配资源分配生产计划生产计划运输方案运输方案解决优化问题的手段解决优化问题的手段经验积累,主观判断经验积累,主观判断作试验,比优劣作试验,比优劣建立数学模型建立数学模型(优化模型优化模型),求最优策略,求最优策略(决策决策)(最最)优化优化:在一定条件下在一定条件下,寻求使目标最大寻求使目标最大(小小)的决策的决策 CUMCMCUMCM赛题:约一半以上与优化有关,需用软件求解赛题:约一半以上与优化有关,需用软件求解运筹学运筹学(OR:Operations/Operati

3、onalResearch)管理科学管理科学(MS:ManagementScience)决策科学决策科学(DS:DecisionScience)(最最)优化理论是运筹学的基本内容优化理论是运筹学的基本内容无无约约束束优优化化OR/MS/DS优化优化(Optimization),规划规划(Programming)线线性性规规划划非非线线性性规规划划网网络络优优化化组组合合优优化化整整数数规规划划不不确确定定规规划划多多目目标标规规划划目目标标规规划划动动态态规规划划优化问题三要素:优化问题三要素:决策变量决策变量;目标函数目标函数;约束条件约束条件约约束束条条件件决策变量决策变量优化问题的一般形式

4、优化问题的一般形式可行解(满足约束)与可行域(可行解的集合)可行解(满足约束)与可行域(可行解的集合)最优解(取到最小大值的可行解)最优解(取到最小大值的可行解)目标函数目标函数无约束优化无约束优化:最优解的分类和条件最优解的分类和条件给定一个函数给定一个函数 f(x),),寻找寻找 x*使得使得 f(x*)最小,即最小,即其中其中局部最优解局部最优解全局最优解全局最优解必要条件必要条件x*f(x)xlxgo充分条件充分条件Hessian阵阵最优解在可行域边界上取得时不能用无约束优化方法求解最优解在可行域边界上取得时不能用无约束优化方法求解约束优化的约束优化的简单分类简单分类线性规划线性规划(

5、LP)目标和约束均为线性函数目标和约束均为线性函数非线性规划非线性规划(NLP)目标或约束中存在非线性函数目标或约束中存在非线性函数二次规划二次规划(QP)目标为二次函数、约束为线性目标为二次函数、约束为线性整数规划整数规划(IP)决策变量决策变量(全部或部分全部或部分)为整数为整数整数整数线性线性规划规划(ILP),整数,整数非线性非线性规划规划(INLP)纯整数规划纯整数规划(PIP),混合整数规划混合整数规划(MIP)一般整数规划,一般整数规划,0-1(整数)规划(整数)规划连连续续优优化化离离散散优优化化数学规划数学规划常用优化软件常用优化软件 1.LINDO/LINGO软件软件2.M

6、ATLAB优化工具箱优化工具箱3.EXCEL软件的优化功能软件的优化功能4.SAS(统计分析统计分析)软件的优化功能软件的优化功能5.其他其他MATLABMATLAB优化工具箱优化工具箱能求解的优化模型能求解的优化模型优化工具箱优化工具箱3.0(MATLAB7.0R14)连续优化连续优化离散优化离散优化无约束优化无约束优化非线性非线性极小极小fminunc非光滑非光滑(不可不可微微)优化优化fminsearch非线性非线性方方程程(组组)fzerofsolve全局全局优化优化暂缺暂缺非线性非线性最小二乘最小二乘lsqnonlinlsqcurvefit线性规划线性规划linprog纯纯0-1规划

7、规划bintprog一般一般IP(暂缺暂缺)非线性规划非线性规划fminconfminimaxfgoalattainfseminf上下界约束上下界约束fminbndfminconlsqnonlinlsqcurvefit约束线性约束线性最小二乘最小二乘lsqnonneglsqlin约束优化约束优化二次规划二次规划quadprog2.LINDO公司的主要软件产品及功能简介公司的主要软件产品及功能简介LINDO LINDO 公司软件产品简要介绍公司软件产品简要介绍美国芝加哥美国芝加哥(Chicago)大学的大学的LinusSchrage教授于教授于1980年前后开发年前后开发,后来成立后来成立LIN

8、DO系统公司(系统公司(LINDOSystemsInc.),),网址:网址:http:/LINDO:LinearINteractiveandDiscreteOptimizer(V6.1)LINGO:LinearINteractiveGeneralOptimizer(V9.0)LINDOAPI:LINDOApplicationProgrammingInterface(V3.0)WhatsBest!:(SpreadSheete.g.EXCEL)(V8.0)演演示示(试用试用)版、学生版、高级版、超级版、工业版、版、学生版、高级版、超级版、工业版、扩展版扩展版(求解(求解问题规模问题规模和和选件选件

9、不同)不同)LINDOLINDO和和LINGOLINGO软件能求解的优化模型软件能求解的优化模型LINGOLINDO优化模型优化模型线性规划线性规划(LP)非线性规划非线性规划(NLP)二次规划二次规划(QP)连续优化连续优化整数规划整数规划(IP)LPQPNLPIP全局优化全局优化(选选)ILPIQPINLPLINDO/LINGO软件的求解过程 LINDO/LINGO预处理程序预处理程序线性优化求解程序线性优化求解程序非线性优化求解程序非线性优化求解程序分枝定界管理程序分枝定界管理程序1.确定常数确定常数2.识别类型识别类型1.单纯形算法单纯形算法2.内点算法内点算法(选选)1、顺序线性规划

10、法、顺序线性规划法(SLP)2、广义既约梯度法、广义既约梯度法(GRG)(选选)3、多点搜索、多点搜索(Multistart)(选选)建模时需要注意的几个基本问题建模时需要注意的几个基本问题1、尽量使用实数优化,减少整数约束和整数变量尽量使用实数优化,减少整数约束和整数变量2、尽量使用光滑优化,减少非光滑约束的个数尽量使用光滑优化,减少非光滑约束的个数如:尽量少使用绝对值、符号函数、多个变量求最如:尽量少使用绝对值、符号函数、多个变量求最大大/最小值、四舍五入、取整函数等最小值、四舍五入、取整函数等3、尽量使用线性模型,减少非线性约束和非线性变量尽量使用线性模型,减少非线性约束和非线性变量的个

11、数的个数(如(如x/y5改为改为x5y)4、合理设定变量上下界,尽可能给出变量初始值合理设定变量上下界,尽可能给出变量初始值5、模型中使用的参数数量级要适当模型中使用的参数数量级要适当(如小于如小于103)3.LINDO/LINGO软件的使用简介软件的使用简介需要掌握的几个重要方面需要掌握的几个重要方面1、LINDO:正确阅读求解报告(尤其要掌握敏感性分析)正确阅读求解报告(尤其要掌握敏感性分析)2、LINGO:掌握集合掌握集合(SETS)的应用;的应用;正确阅读求解报告;正确阅读求解报告;正确理解求解状态窗口;正确理解求解状态窗口;学会设置基本的求解选项学会设置基本的求解选项(OPTIONS

12、);掌握与外部文件的基本接口方法掌握与外部文件的基本接口方法例例1加工奶制品的生产计划加工奶制品的生产计划1桶牛奶 3公斤A1 12小时 8小时 4公斤A2 或获利24元/公斤 获利16元/公斤 50桶牛奶桶牛奶时间时间480小时小时 至多加工至多加工100公斤公斤A1制订生产计划,使每天获利最大制订生产计划,使每天获利最大 35元可买到元可买到1桶牛奶,买吗?若买,每天最多买多少桶牛奶,买吗?若买,每天最多买多少?可聘用临时工人,付出的工资最多是每小时几元可聘用临时工人,付出的工资最多是每小时几元?A1的获利增加到的获利增加到30元元/公斤,应否改变生产计划?公斤,应否改变生产计划?每天:每

13、天:1桶牛奶 3公斤A1 12小时 8小时 4公斤A2 或获利24元/公斤 获利16元/公斤 x1桶牛奶生产桶牛奶生产A1x2桶牛奶生产桶牛奶生产A2获利获利243x1获利获利164 x2原料供应原料供应 劳动时间劳动时间 加工能力加工能力 决策变量决策变量 目标函数目标函数 每天获利每天获利约束条件约束条件非负约束非负约束 线性线性规划规划模型模型(LP)时间时间480小时小时 至多加工至多加工100公斤公斤A150桶牛奶桶牛奶每天每天模型求解模型求解 max72x1+64x2st2)x1+x2503)12x1+8x24804)3x1100endOBJECTIVEFUNCTIONVALUE1

14、)3360.000VARIABLEVALUEREDUCEDCOSTX120.0000000.000000X230.0000000.000000ROWSLACKORSURPLUSDUALPRICES2)0.00000048.0000003)0.0000002.0000004)40.0000000.000000NO.ITERATIONS=2DORANGE(SENSITIVITY)ANALYSIS?No20桶牛奶生产桶牛奶生产A1,30桶生产桶生产A2,利润利润3360元。元。模型求解模型求解 reduced cost值值表表示示当当该该非非基基变变量量增增加加一一个个单单位位时时(其其他他非非基基

15、变变量量保保持持不不变变)目目标标函函数数减减少少的的量量(对对max型问题型问题)OBJECTIVEFUNCTIONVALUE1)3360.000VARIABLEVALUEREDUCEDCOSTX120.0000000.000000X230.0000000.000000ROWSLACKORSURPLUSDUALPRICES2)0.00000048.0000003)0.0000002.0000004)40.0000000.000000NO.ITERATIONS=2也可理解为:也可理解为:为为了了使使该该非非基基变变量量变变成成基基变变量量,目目标标函函数数中中对对应应系数应增加的量系数应增加的

16、量OBJECTIVEFUNCTIONVALUE1)3360.000VARIABLEVALUEREDUCEDCOSTX120.0000000.000000X230.0000000.000000ROWSLACKORSURPLUSDUALPRICES2)0.00000048.0000003)0.0000002.0000004)40.0000000.000000原料无剩余原料无剩余时间无剩余时间无剩余加工能力剩余加工能力剩余40max72x1+64x2st2)x1+x2503)12x1+8x24804)3x1100end三三种种资资源源“资源资源”剩余为零的约束为紧约束(有效约束)剩余为零的约束为紧约

17、束(有效约束)结果解释结果解释 OBJECTIVEFUNCTIONVALUE1)3360.000VARIABLEVALUEREDUCEDCOSTX120.0000000.000000X230.0000000.000000ROWSLACKORSURPLUSDUALPRICES2)0.00000048.0000003)0.0000002.0000004)40.0000000.000000结果解释结果解释 最优解下最优解下“资源资源”增增加加1单位时单位时“效益效益”的的增量增量原料增原料增1单位单位,利润增利润增48时间加时间加1单位单位,利润增利润增2能力增减不影响利润能力增减不影响利润影子价格

18、影子价格35元可买到元可买到1桶牛奶,要买吗?桶牛奶,要买吗?35”(或(或“=”(或(或“=”)功能相)功能相同同2.变量与系数间可有空格变量与系数间可有空格(甚至回车甚至回车),但无运算符但无运算符3.变量名以字母开头,不能超过变量名以字母开头,不能超过8个字符个字符4.变量名不区分大小写(包括变量名不区分大小写(包括LINDO中的关键字)中的关键字)5.目标函数所在行是第一行,第二行起为约束条件目标函数所在行是第一行,第二行起为约束条件6.行号行号(行名行名)自动产生或人为定义。行名以自动产生或人为定义。行名以“)”结结束束7.行中注有行中注有“!”符号的后面部分为注释。如符号的后面部分

19、为注释。如:!ItsComment.8.在模型的任何地方都可以用在模型的任何地方都可以用“TITLE”对模型命名对模型命名(最多(最多72个字符),如:个字符),如:TITLEThisModelisonlyanExample9.变量不能出现在一个约束条件的右端变量不能出现在一个约束条件的右端10.表达式中不接受括号表达式中不接受括号“()”和逗号和逗号“,”等任何符等任何符号号,例例:400(X1+X2)需写为需写为400X1+400X211.表达式应化简,如表达式应化简,如2X1+3X2-4X1应写成应写成-2X1+3X212.缺省假定所有变量非负;可在模型的缺省假定所有变量非负;可在模型的

20、“END”语句语句后用后用“FREEname”将变量将变量name的非负假定取消的非负假定取消13.可在可在“END”后用后用“SUB”或或“SLB”设定变量上设定变量上下界下界例如:例如:“subx110”的作用等价于的作用等价于“x1=10”但用但用“SUB”和和“SLB”表示的上下界约束不计入模表示的上下界约束不计入模型的约束,也不能给出其松紧判断和敏感性分析。型的约束,也不能给出其松紧判断和敏感性分析。14.“END”后对后对0-1变量说明:变量说明:INTn或或INTname15.“END”后对整数变量说明:后对整数变量说明:GINn或或GINname使用使用LINDOLINDO的一

21、些注意事项的一些注意事项二次规划规划(QP)问题LINDO可求解二次规划可求解二次规划(QP)问题,但输入方式较问题,但输入方式较复杂,因为在复杂,因为在LINDO中不许出现非线性表达式中不许出现非线性表达式需要为每一个实际约束增加一个对偶变量需要为每一个实际约束增加一个对偶变量(LAGRANGE乘子),在实际约束前增加有关乘子),在实际约束前增加有关变量的一阶最优条件,转化为互补问题变量的一阶最优条件,转化为互补问题“END”后面使用后面使用QCP命令指明实际约束开始的行命令指明实际约束开始的行号,然后才能求解号,然后才能求解建议总是用建议总是用LINGO解解QP注意注意对对QP和和IP:敏

22、感性分析意义不大敏感性分析意义不大状态窗口状态窗口(LINDO Solver Status)当前状态:已达最优解当前状态:已达最优解迭代次数:迭代次数:18次次约束不满足的约束不满足的“量量”(不不是是“约束个数约束个数”):0当前的目标值:当前的目标值:94最好的整数解:最好的整数解:94整数规划的界:整数规划的界:93.5分枝数:分枝数:1所用时间:所用时间:0.00秒(太快秒(太快了,还不到了,还不到0.005秒)秒)刷新本界面的间隔刷新本界面的间隔:1(秒秒)选项设置选项设置Preprocess:预处理:预处理(生成割平面生成割平面);PreferredBranch:优先的分枝方式:优

23、先的分枝方式:“Default”(缺省方式)、(缺省方式)、“Up”(向上取整优先)、(向上取整优先)、“Down”(向下取整优先);(向下取整优先);IPOptimalityTol:IP最优值允许的误最优值允许的误差上限(一个百分数,如差上限(一个百分数,如5%即即0.05););IPObjectiveHurdle:IP目标函数的篱目标函数的篱笆值,即只寻找比这个值更优最优解笆值,即只寻找比这个值更优最优解(如当知道当前模型的某个整数可行解(如当知道当前模型的某个整数可行解时,就可以设置这个值);时,就可以设置这个值);IPVarFixingTol:固定一个整数变量:固定一个整数变量取值所依

24、据的一个上限(如果一个整数取值所依据的一个上限(如果一个整数变量的判别数(变量的判别数(REDUCEDCOST)的)的值很大,超过该上限,则以后求解中把值很大,超过该上限,则以后求解中把该整数变量固定下来)。该整数变量固定下来)。NonzeroLimit:非零系数的个数上限;非零系数的个数上限;IterationLimit:最大迭代步数;最大迭代步数;InitialContraintTol:约束的初始误差上限;约束的初始误差上限;FinalContraintTol:约束的最后误差上限;约束的最后误差上限;EnteringVarTol:进基变量的进基变量的REDUCEDCOST的误差限;的误差限

25、;PivotSizeTol:旋转元的误差限旋转元的误差限Report/Statistics第一行:模型有第一行:模型有5行(约束行(约束4行),行),4个变量,两个整数变量(没有个变量,两个整数变量(没有0-1变量),从第变量),从第4行开始是二次规划的实际约束。行开始是二次规划的实际约束。第二行:非零系数第二行:非零系数19个,约束中非零系数个,约束中非零系数12个个(其中其中6个为个为1或或-1),模型密度为模型密度为0.760(密度密度=非零系数非零系数/行数行数(变量数变量数)。第三行的意思:按绝对值看,系数最小、最大分别为第三行的意思:按绝对值看,系数最小、最大分别为0.3和和277

26、。第四行的意思:模型目标为极小化;小于等于、等于、大于等于约第四行的意思:模型目标为极小化;小于等于、等于、大于等于约束分别有、个;广义上界约束(束分别有、个;广义上界约束(GUBS)不超过个;)不超过个;变量上界约束(变量上界约束(VUBS)不少于个。所谓)不少于个。所谓GUBS,是指一组不,是指一组不含有相同变量的约束;所谓含有相同变量的约束;所谓VUBS,是指一个蕴涵变量上界的约,是指一个蕴涵变量上界的约束,如从约束束,如从约束X1+X2-X3=0可以看出,若可以看出,若X3=0,则,则X1=0,X2=0(因为有非负限制),因此(因为有非负限制),因此X1+X2-X3=0是一个是一个VU

27、BS约束。约束。第五行的意思:只含个变量的约束个数第五行的意思:只含个变量的约束个数=个;冗余的列数个;冗余的列数=个个ROWS=5 VARS=4 INTEGER VARS=2(0=0/1)QCP=4NONZEROS=19 CONSTRAINT NONZ=12(6=+-1)DENSITY=0.760SMALLEST AND LARGEST ELEMENTS IN ABSOLUTE VALUE=0.300000 277.000OBJ=MIN,NO.:2 0 2,GUBS=0SINGLE COLS=0 REDUNDANT COLS=0LINDOLINDO行命令、命令脚本文件行命令、命令脚本文件批处

28、理:可以采用命令脚本(行命令序列)批处理:可以采用命令脚本(行命令序列)WINDOWS环境下行命令的意义不大环境下行命令的意义不大Example演示演示用用FILE/TAKECOMMANDS(F11)命令调入命令调入必须是以必须是以LINDOPACKED形式形式(压缩)保存的文件(压缩)保存的文件FILE/SAVE命令命令SAVE行命令行命令LINGO软件简介软件简介目标与约束段目标与约束段集合段(集合段(SETSENDSETS)数据段(数据段(DATAENDDATA)初始段(初始段(INITENDINIT)计算段计算段(CALCENDCALC)-LINGO9.0LINGO模型的构成:模型的构

29、成:5个段个段LINGO模型的优点模型的优点包含了包含了LINDO的全部功能的全部功能提供了灵活的编程语言(矩阵生成器)提供了灵活的编程语言(矩阵生成器)LINGOLINGO模型模型 例:选址问题例:选址问题某公司有某公司有6个建筑工地,位置坐标为个建筑工地,位置坐标为(ai,bi)(单位:公单位:公里里),水泥日用量水泥日用量di(单位:吨)单位:吨)假设:假设:料场料场和工地之间和工地之间有直线道路有直线道路用例中数据计算,最优解为总吨公里数为总吨公里数为总吨公里数为总吨公里数为136.2136.2线性规划模型线性规划模型决策变量:决策变量:ci j(料场料场j到到工地工地i的运量)的运量

30、)12维维选址问题:选址问题:NLPNLP2)改建两个新料场,需要确定新料场位置)改建两个新料场,需要确定新料场位置(xj,yj)和运量和运量cij,在其它条件不变下使总吨公里数最小。在其它条件不变下使总吨公里数最小。决策变量:决策变量:ci j,(xj,yj)16维维非线性规划模型非线性规划模型LINGO模型的构成:模型的构成:4个段个段集合段(集合段(SETSENDSETS)数据段(数据段(DATAENDDATA)初始段(初始段(INITENDINIT)目标与目标与约束段约束段局部最优:局部最优:89.8835(吨公里吨公里)LP:移到数据段:移到数据段边界集合的类型集合的类型集合集合派生

31、集合派生集合基本集合基本集合稀疏集合稀疏集合稠密集合稠密集合元素列表法元素列表法元素过滤法元素过滤法直接列举法直接列举法隐式列举法隐式列举法setname/member_list/:attribute_list;setname(parent_set_list)/member_list/:attribute_list;SETS:CITIES/A1,A2,A3,B1,B2/;ROADS(CITIES,CITIES)/A1,B1 A1,B2 A2,B1 A3,B2/:D;ENDSETSSETS:STUDENTS/S1.S8/;PAIRS(STUDENTS,STUDENTS)|&2#GT#&1:BEN

32、EFIT,MATCH;ENDSETS集合元素的集合元素的隐式列举隐式列举类类型型隐隐式列式列举举格式格式示例示例示例集合的元素示例集合的元素数字型数字型 1.n1.51,2,3,4,5字符字符-数字型数字型stringM.stringNCar101.car208 Car101,car102,car208星期型星期型 dayM.dayNMON.FRIMON,TUE,WED,THU,FRI月份型月份型 monthM.monthN OCT.JANOCT,NOV,DEC,JAN年份年份-月份型月份型monthYearM.monthYearNOCT2001.JAN2002OCT2001,NOV2001,

33、DEC2001,JAN2002运算符的优先级运算符的优先级 优优先先级级运算符运算符最高最高#NOT#(负负号)号)*/+(减法)(减法)#EQ#NE#GT#GE#LT#LE#AND#OR#最低最低(=)三类运算符:三类运算符:算术运算符算术运算符逻辑运算符逻辑运算符关系运算符关系运算符集合循环函数集合循环函数四个集合循环函数:四个集合循环函数:FOR、SUM、MAX、MINfunction(setname (set_index_list)|condition:expression_list);objective MAX=SUM(PAIRS(I,J):BENEFIT(I,J)*MATCH(I,

34、J);FOR(STUDENTS(I):constraints SUM(PAIRS(J,K)|J#EQ#I#OR#K#EQ#I:MATCH(J,K)=1);FOR(PAIRS(I,J):BIN(MATCH(I,J);MAXB=MAX(PAIRS(I,J):BENEFIT(I,J);MINB=MIN(PAIRS(I,J):BENEFIT(I,J);Example:状态窗口状态窗口Solver Type:B-and-BGlobal MultistartModel Class:LP,QP,ILP,IQP,PILP,PIQP,NLP,INLP,PINLP State:Global OptimumLoca

35、l OptimumFeasibleInfeasibleUnboundedInterruptedUndetermined7 7个选项卡个选项卡(可设置可设置80-9080-90个控制参数个控制参数)程序与数据分离程序与数据分离文文本本文文件件使用外部数据文件使用外部数据文件Cut(orCopy)Paste方法方法FILE输入数据、输入数据、TEXT输出数据(文本文件)输出数据(文本文件)OLE函数与电子表格软件(如函数与电子表格软件(如EXCEL)连接)连接ODBC函数与数据库连接函数与数据库连接LINGO命令脚本文件命令脚本文件LG4(LONGO模型文件)模型文件)LNG(LONGO模型文件)

36、模型文件)LTF(LONGO脚本文件)脚本文件)LDT(LONGO数据文件)数据文件)LRP(LONGO报告文件)报告文件)常用文件后缀常用文件后缀FILEFILE和和TEXTTEXT:文本文件输入输出:文本文件输入输出MODEL:SETS:MYSET/FILE(myfile.txt)/:FILE(myfile.txt);ENDSETSMIN=SUM(MYSET(I):SHIP(I)*COST(I);FOR(MYSET(I):CON1 SHIP(I)NEED(I);CON2 SHIP(I)NEED(I);CON2 SHIP(I)SUPPLY(I);DATA:MYSET=OLE(D:JXIEBJ

37、2004MCMmydata.xls,CITIES);COST,NEED,SUPPLY=OLE(mydata.xls);OLE(mydata.xls,SOLUTION)=SHIP;ENDDATAEND mydata.xls文件中必须有下列名称(及数据):CITIES,COST,NEED,SUPPLY,SOLUTION在在EXCEL中还可以通过中还可以通过“宏宏”自动调用自动调用LINGO(略略)也可以将也可以将EXCEL表格嵌入到表格嵌入到LINGO模型中模型中(略略)演示演示MydataExample.lg4ODBC ODBC:与数据库连接:与数据库连接输入基本集合元素:输入基本集合元素:se

38、tname/ODBC(datasource,tablename,columnname)/输入派生集合元素:输入派生集合元素:setname/ODBC(source,table,column1,column2)/目前支持下列目前支持下列DBMS:(如为其他数据库,则需自行安装驱动如为其他数据库,则需自行安装驱动)ACCESS,DBASE,EXCEL,FOXPRO,ORACLE,PARADOX,SQLSERVER,TEXEFILES使用数据库之前,数据源需要在使用数据库之前,数据源需要在ODBC管理器注册管理器注册输入数据:输入数据:Attr_list=ODBC(source,table,colu

39、mn1,column2)输出数据:输出数据:ODBC(source,table,column1,column2)=Attr_list具体例子略具体例子略4.建模与求解实例(结合软件使用)建模与求解实例(结合软件使用)建模实例与求解建模实例与求解最短路问题最短路问题下料问题下料问题飞机定位飞机定位露天矿的运输问题露天矿的运输问题钢管运输问题钢管运输问题电力市场的堵塞管理电力市场的堵塞管理例例最短路问题最短路问题求各点到求各点到T的最短路的最短路56774968658336C1B1C2B2A1A2A3TS6shortestPath.lg4问题问题1.如何下料最节省如何下料最节省?例例 钢管下料钢管

40、下料 问题问题2.客户增加需求:客户增加需求:原料钢管原料钢管:每根每根19米米 4米米50根根 6米米20根根 8米米15根根 客户需求客户需求节省的标准是什么?节省的标准是什么?由于采用不同切割模式太多,会增加生产和管理成本,由于采用不同切割模式太多,会增加生产和管理成本,规定切割模式不能超过规定切割模式不能超过3种。如何下料最节省?种。如何下料最节省?5米米10根根 按照客户需要在一根原料钢管上安排切割的一种组合。按照客户需要在一根原料钢管上安排切割的一种组合。切割模式切割模式余料余料1 1米米 4米米1根根 6米米1根根 8米米1根根余料余料3米米4米米1根根6米米1根根6米米1根根合

41、理切割模式合理切割模式的余料应小于客户需要钢管的最小尺寸的余料应小于客户需要钢管的最小尺寸余料余料3米米8米米1根根8米米1根根钢管下料钢管下料 为满足客户需要,按照哪些种合理模式,每种模式为满足客户需要,按照哪些种合理模式,每种模式切割多少根原料钢管,最为节省?切割多少根原料钢管,最为节省?合理切割模式合理切割模式2.所用原料钢管总根数最少所用原料钢管总根数最少模式模式4米钢管根数米钢管根数6米钢管根数米钢管根数8米钢管根数米钢管根数余料余料(米米)14003231013201341203511116030170023钢管下料问题钢管下料问题1 1 两种两种标准标准1.原料钢管剩余总余量最小

42、原料钢管剩余总余量最小xi 按第按第i 种模式切割的原料钢管根数种模式切割的原料钢管根数(i=1,2,7)约束约束满足需求满足需求 决策变量决策变量 目标目标1(总余量)(总余量)按模式按模式2切割切割12根根,按模式按模式5切割切割15根,余料根,余料27米米模模式式4米米根数根数6米米根数根数8米米根数根数余余料料14003231013201341203511116030170023需需求求502015最优解:最优解:x2=12,x5=15,其余为其余为0;最优值:最优值:27整数约束:整数约束:xi 为为整数整数当余料没有用处时,当余料没有用处时,通常以总根数最少为目标通常以总根数最少为

43、目标 目标目标2(总根数)(总根数)钢管下料问题钢管下料问题1 1 约束条约束条件不变件不变 最优解:最优解:x2=15,x5=5,x7=5,其余为其余为0;最优值:最优值:25。xi 为整数按模式按模式2切割切割15根,根,按模式按模式5切割切割5根,根,按模式按模式7切割切割5根,根,共共25根,余料根,余料35米米虽余料增加虽余料增加8米,但减少了米,但减少了2根根与与目标目标1的结果的结果“共切割共切割27根,余料根,余料27米米”相比相比钢管下料问题钢管下料问题2 2对大规模问题,用模型的约束条件界定合理模式对大规模问题,用模型的约束条件界定合理模式增加一种需求:增加一种需求:5米米

44、10根;切割根;切割模式不超过模式不超过3种。种。现有现有4种种需求:需求:4米米50根,根,5米米10根,根,6米米20根,根,8米米15根,用枚举法确定合理切割模式,过于复杂。根,用枚举法确定合理切割模式,过于复杂。决策变量决策变量 xi 按第按第i 种模式切割的原料钢管根数种模式切割的原料钢管根数(i=1,2,3)r1i,r2i,r3i,r4i 第第i 种切割模式下,每根原料钢种切割模式下,每根原料钢管生产管生产4米、米、5米、米、6米和米和8米长的钢管的数量米长的钢管的数量满足需求满足需求模式合理:每根模式合理:每根余料不超过余料不超过3米米整数非线性规划模型整数非线性规划模型钢管下料

45、问题钢管下料问题2 2目标函数(目标函数(总根数)总根数)约束约束条件条件整数约束:整数约束:xi,r1i,r2i,r3i,r4i(i=1,2,3)为整数为整数增加约束,缩小可行域,便于求解增加约束,缩小可行域,便于求解原料钢管总根数下界:原料钢管总根数下界:特殊生产计划:对每根原料钢管特殊生产计划:对每根原料钢管模式模式1:切割成:切割成4根根4米钢管,需米钢管,需13根;根;模式模式2:切割成:切割成1根根5米和米和2根根6米钢管,需米钢管,需10根;根;模式模式3:切割成:切割成2根根8米钢管,需米钢管,需8根。根。原料钢管总根数上界:原料钢管总根数上界:31模式排列顺序可任定模式排列顺

46、序可任定钢管下料问题钢管下料问题2 2需求:需求:4米米50根,根,5米米10根,根,6米米20根,根,8米米15根根每根原料钢管长每根原料钢管长19米米LINGOLINGO求解整数非线性规划模型求解整数非线性规划模型Localoptimalsolutionfoundatiteration:12211Objectivevalue:28.00000VariableValueReducedCostX110.000000.000000X210.000002.000000X38.0000001.000000R113.0000000.000000R122.0000000.000000R130.00000

47、00.000000R210.0000000.000000R221.0000000.000000R230.0000000.000000R311.0000000.000000R321.0000000.000000R330.0000000.000000R410.0000000.000000R420.0000000.000000R432.0000000.000000模式模式1:每根原料钢管切割成:每根原料钢管切割成3根根4米和米和1根根6米钢管,共米钢管,共10根;根;模式模式2:每根原料钢管切割成:每根原料钢管切割成2根根4米、米、1根根5米和米和1根根6米钢管,米钢管,共共10根;根;模式模式3:

48、每根原料钢管切割成:每根原料钢管切割成2根根8米钢管,共米钢管,共8根。根。原料钢管总根数为原料钢管总根数为28根。根。演示演示cut02a.lg4;cut02b.lg40yxVOR2x=629,y=375309.00(1.30)864.3(2.0)飞机x=?,y=?VOR1x=764,y=1393161.20(0.80)VOR3x=1571,y=25945.10(0.60)北DMEx=155,y=987飞机与监控台(图中坐标和测量距离的单位是“公里”)实例实例:飞机精确定位问题飞机精确定位问题 飞机精确定位模型飞机精确定位模型xiyi原始的 (或d4)VOR1 7461393161.20(2

49、.81347弧度)0.80(0.0140弧度)VOR2 62937545.10(0.78714弧度)0.60(0.0105弧度)VOR3 1571259309.00(5.39307弧度)1.30(0.0227弧度)DME155987d4=864.3(km)2.0(km)飞机精确定位模型飞机精确定位模型第第1类模型类模型:不考虑误差因素不考虑误差因素超定方程组,超定方程组,非线性最小二乘!非线性最小二乘!量纲不符!量纲不符!?飞机精确定位模型飞机精确定位模型第第2类模型类模型:考虑误差因素考虑误差因素(作为硬约束作为硬约束)Min x;Min y;Max x;Max y.以距离为约束,优化角度误

50、差之和(或平方和);以距离为约束,优化角度误差之和(或平方和);或以角度为约束,优化距离误差或以角度为约束,优化距离误差.非线性规划非线性规划?仅部分考虑误差仅部分考虑误差!角度与距离的角度与距离的“地位地位”不应不同!不应不同!有人也可能会采用其他目标,如:有人也可能会采用其他目标,如:误差非均匀分布!误差非均匀分布!飞机精确定位模型飞机精确定位模型误差一般服从什么分布?误差一般服从什么分布?正态分布!正态分布!不同的量纲如何处理?不同的量纲如何处理?无约束非线性最小二乘模型无约束非线性最小二乘模型归一化处理!归一化处理!shili0702.m飞机坐标飞机坐标(978.31,723.98),

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 生活常识

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁