辽宁省大连市2016年中考数学试题(word版含解析).doc

上传人:赵** 文档编号:67299758 上传时间:2022-12-24 格式:DOC 页数:30 大小:691.14KB
返回 下载 相关 举报
辽宁省大连市2016年中考数学试题(word版含解析).doc_第1页
第1页 / 共30页
辽宁省大连市2016年中考数学试题(word版含解析).doc_第2页
第2页 / 共30页
点击查看更多>>
资源描述

《辽宁省大连市2016年中考数学试题(word版含解析).doc》由会员分享,可在线阅读,更多相关《辽宁省大连市2016年中考数学试题(word版含解析).doc(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2016年辽宁省大连市中考数学试卷一、选择题:本大题共8小题,每小题3分,共24分13的相反数是()A B C3 D32在平面直角坐标系中,点(1,5)所在的象限是()A第一象限 B第二象限 C第三象限 D第四象限3方程2x+3=7的解是()Ax=5 Bx=4 Cx=3.5 Dx=24如图,直线ABCD,AE平分CABAE与CD相交于点E,ACD=40,则BAE的度数是()A40 B70 C80 D1405不等式组的解集是()Ax2 Bx1 C1x2 D2x16一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号

2、的积小于4的概率是()A B C D7某文具店三月份销售铅笔100支,四、五两个月销售量连续增长若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A100(1+x) B100(1+x)2C100(1+x2) D100(1+2x)8如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)()A40cm2B65cm2C80cm2D105cm2二、填空题:本大题共8小题,每小题3分,共24分9因式分解:x23x=来源:学#科#网10若反比例函数y=的图象经过点(1,6),则k的值为11如图,将ABC绕点A逆时针旋转的到ADE,点C和点E是对应点,若CAE=90,AB=1,则BD=12下表是

3、某校女子排球队队员的年龄分布年龄/岁13141516频数1173则该校女子排球队队员的平均年龄是岁13如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是14若关于x的方程2x2+xa=0有两个不相等的实数根,则实数a的取值范围是15如图,一艘渔船位于灯塔P的北偏东30方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东55方向上的B处,此时渔船与灯塔P的距离约为海里(结果取整数)(参考数据:sin550.8,cos550.6,tan551.4)16如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m

4、,c),则点A的坐标是三、解答题:本大题共4小题,17、18、19各9分20题12分,共39分17计算:( +1)(1)+(2)018先化简,再求值:(2a+b)2a(4a+3b),其中a=1,b=19如图,BD是ABCD的对角线,AEBD,CFBD,垂足分别为E、F,求证:AE=CF20为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分分组家庭用水量x/吨家庭数/户A0x4.04B4.0x6.513C6.5x9.0D9.0x11.5E11.5x14.06Fx4.03根据以上信息,解答下列问题(1)家庭用水量在4.0x6.5范围内的家庭

5、有户,在6.5x9.0范围内的家庭数占被调查家庭数的百分比是%;(2)本次调查的家庭数为户,家庭用水量在9.0x11.5范围内的家庭数占被调查家庭数的百分比是%;(3)家庭用水量的中位数落在组;(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数四、解答题:本大题共3小题,21、22各9分23题10分,共28分21A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度22如图,抛物线y=x23x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点

6、,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标23如图,AB是O的直径,点C、D在O上,A=2BCD,点E在AB的延长线上,AED=ABC(1)求证:DE与O相切;(2)若BF=2,DF=,求O的半径五、解答题:本大题共3小题,24题11分,25、26各12分,共35分24如图1,ABC中,C=90,线段DE在射线BC上,且DE=AC,线段DE沿射线BC运动,开始时,点D与点B重合,点D到达点C时运动停止,过点D作DF=DB,与射线BA相交于点F,过点E作BC的垂线,与射线BA相交于点G设BD=x,四边形DEGF与ABC重叠部分

7、的面积为S,S关于x的函数图象如图2所示(其中0xm,1xm,mx3时,函数的解析式不同)(1)填空:BC的长是;(2)求S关于x的函数关系式,并写出x的取值范围25阅读下面材料:小明遇到这样一个问题:如图1,ABC中,AB=AC,点D在BC边上,DAB=ABD,BEAD,垂足为E,求证:BC=2AE小明经探究发现,过点A作AFBC,垂足为F,得到AFB=BEA,从而可证ABFBAE(如图2),使问题得到解决(1)根据阅读材料回答:ABF与BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,ABC中

8、,AB=AC,BAC=90,D为BC的中点,E为DC的中点,点F在AC的延长线上,且CDF=EAC,若CF=2,求AB的长;(3)如图4,ABC中,AB=AC,BAC=120,点D、E分别在AB、AC边上,且AD=kDB(其中0k),AED=BCD,求的值(用含k的式子表示)26如图,在平面直角坐标系xOy中,抛物线y=x2+与y轴相交于点A,点B与点O关于点A对称(1)填空:点B的坐标是;(2)过点B的直线y=kx+b(其中k0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;(3)在(2)的

9、条件下,若点C关于直线BP的对称点C恰好落在该抛物线的对称轴上,求此时点P的坐标2016年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分13的相反数是()A B C3 D3【考点】相反数【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可【解答】解:(3)+3=0故选C【点评】本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单2在平面直角坐标系中,点(1,5)所在的象限是()A第一象限 B第二象限 C第三象限 D第四象限【考点】点的坐标【分析】根据各象限内点的坐标特征解答即可【解答】解:点(1,5)所在的象限是第

10、一象限故选A【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(,+);第三象限(,);第四象限(+,)3方程2x+3=7的解是()Ax=5 Bx=4 Cx=3.5 Dx=2【考点】一元一次方程的解【专题】计算题;一次方程(组)及应用【分析】方程移项合并,把x系数化为1,即可求出解【解答】解:2x+3=7,移项合并得:2x=4,解得:x=2,故选D【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值4如图,直线ABCD,AE平分CABAE与CD相交于点E,ACD=40,则BAE

11、的度数是()A40 B70 C80 D140【考点】平行线的性质【分析】先由平行线性质得出ACD与BAC互补,并根据已知ACD=40计算出BAC的度数,再根据角平分线性质求出BAE的度数【解答】解:ABCD,ACD+BAC=180,ACD=40,BAC=18040=140,AE平分CAB,BAE=BAC=140=70,故选B【点评】本题考查了平行线的性质和角平分线的定义,比较简单;做好本题要熟练掌握两直线平行内错角相等,同位角相等,同旁内角互补;并会书写角平分线定义的三种表达式:若AP平分BAC,则BAP=PAC,BAP=BAC,BAC=2BAP5不等式组的解集是()Ax2 Bx1 C1x2

12、D2x1【考点】解一元一次不等式组【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集【解答】解:,解得x2,解得x1,则不等式组的解集是:2x1故选D来源:学科网ZXXK【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到来源:学科网6一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A B C D【考点】列表法与树状图法【分析】首先根据题意

13、画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号的积小于4的情况,再利用概率公式求解即可求得答案【解答】解:画树状图得:共有12种等可能的结果,两次摸出的小球标号的积小于4的有4种情况,两次摸出的小球标号的积小于4的概率是: =故选C【点评】此题考查了列表法或树状图法求概率注意此题是不放回实验用到的知识点为:概率=所求情况数与总情况数之比7某文具店三月份销售铅笔100支,四、五两个月销售量连续增长若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A100(1+x) B100(1+x)2C100(1+x2) D100(1+2x)【考点】由实际问题抽象出一元二次方程【专题】增

14、长率问题【分析】设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的产量是100(1+x)2,据此列方程即可【解答】解:若月平均增长率为x,则该文具店五月份销售铅笔的支数是:100(1+x)2,故选:B【点评】本题考查数量平均变化率问题,解题的关键是正确列出一元二次方程原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a(1x),再经过第二次调整就是a(1x)(1x)=a(1x)2增长用“+”,下降用“”8如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)()A40cm2B65cm2C80cm2D105cm2【考点】由三视图判断几何体

15、【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为8cm,底面半径为102=5cm,故表面积=rl+r2=58+52=65cm2故选:B【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查二、填空题:本大题共8小题,每小题3分,共24分9因式分解:x23x=x(x3)【考点】因式分解-提公因式法【专题】因式分解【分析】确定公因式是x,然后提取公因式即可【解答】解:x23x=

16、x(x3)故答案为:x(x3)【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解10若反比例函数y=的图象经过点(1,6),则k的值为6【考点】反比例函数图象上点的坐标特征【分析】直接把点(1,6)代入反比例函数y=,求出k的值即可【解答】解:反比例函数y=的图象经过点(1,6),k=1(6)=6故答案为:6【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键11如图,将ABC绕点A逆时针旋转的到ADE,点C和点E是对应点,若CAE=90,AB

17、=1,则BD=【考点】旋转的性质【分析】由旋转的性质得:AB=AD=1,BAD=CAE=90,再根据勾股定理即可求出BD【解答】解:将ABC绕点A逆时针旋转的到ADE,点C和点E是对应点,AB=AD=1,BAD=CAE=90,BD=故答案为【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了勾股定理,掌握旋转的性质是解决问题的关键12下表是某校女子排球队队员的年龄分布年龄/岁13141516频数1173则该校女子排球队队员的平均年龄是15岁【考点】加权平均数;频数与频率【分析】根据加权平均数的计算公式列出算式,再进行计

18、算即可【解答】解:根据题意得:(131+141+157+163)12=15(岁),即该校女子排球队队员的平均年龄为15岁故答案为:15【点评】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键13如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是24【考点】菱形的性质【分析】直接利用菱形的性质结合勾股定理得出BD的长,再利用菱形面积求法得出答案【解答】解:连接BD,交AC于点O,四边形ABCD是菱形,ACBD,AO=CO=4,BO=3,故BD=6,则菱形的面积是:68=24故答案为:24【点评】此题主要考查了菱形的性质以及勾股定理,正确求出BD的长是解题关键14若关于x的方程2

19、x2+xa=0有两个不相等的实数根,则实数a的取值范围是a【考点】根的判别式;解一元一次不等式【分析】由方程有两个不相等的实数根结合根的判别式,可以得出关于a的一元一次不等式,解不等式即可得出结论【解答】解:关于x的方程2x2+xa=0有两个不相等的实数根,=1242(a)=1+8a0,解得:a故答案为:a【点评】本题考查了根的判别式以及解一元一次不等式,解题的关键是找出1+8a0本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(不等式组或方程)是关键15如图,一艘渔船位于灯塔P的北偏东30方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P

20、的南偏东55方向上的B处,此时渔船与灯塔P的距离约为11海里(结果取整数)(参考数据:sin550.8,cos550.6,tan551.4)【考点】解直角三角形的应用-方向角问题【分析】作PCAB于C,先解RtPAC,得出PC=PA=9,再解RtPBC,得出PB=11【解答】解:如图,作PCAB于C,在RtPAC中,PA=18,A=30,PC=PA=18=9,在RtPBC中,PC=9,B=55,PB=11,答:此时渔船与灯塔P的距离约为11海里故答案为11【点评】本题考查了解直角三角形的应用方向角问题,含30角的直角三角形的性质,锐角三角函数定义解一般三角形的问题可以转化为解直角三角形的问题,

21、解决的方法就是作高线16如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是(2,0)【考点】抛物线与x轴的交点【分析】根据函数值相等两点关于对称轴对称,可得对称轴,根据A、B关于对称轴对称,可得A点坐标【解答】解:由C(0,c),D(m,c),得函数图象的对称轴是x=,设A点坐标为(x,0),由A、B关于对称轴x=,得=,解得x=2,即A点坐标为(2,0),故答案为:(2,0)【点评】本题考查了抛物线与x轴的交点,利用函数值相等的点关于对称轴对称是解题关键三、解答题:本大题共4小题,17、18、19各9分20题

22、12分,共39分17计算:( +1)(1)+(2)0【考点】实数的运算;零指数幂【分析】本题涉及平方差公式、零指数幂、三次根式化简3个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【解答】解:( +1)(1)+(2)0=51+13=2【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握平方差公式、零指数幂、三次根式等考点的运算18先化简,再求值:(2a+b)2a(4a+3b),其中a=1,b=【考点】整式的混合运算化简求值【专题】计算题;整式【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结

23、果,把a与b的值代入计算即可求出值【解答】解:原式=4a2+4ab+b24a23ab=ab+b2,当a=1,b=时,原式=+2【点评】此题考查了整式的混合运算化简求值,熟练掌握运算法则是解本题的关键19如图,BD是ABCD的对角线,AEBD,CFBD,垂足分别为E、F,求证:AE=CF【考点】平行四边形的性质【专题】证明题【分析】根据平行四边形的性质得出AB=CD,ABCD,根据平行线的性质得出ABE=CDF,求出AEB=CFD=90,根据AAS推出ABECDF,得出对应边相等即可【解答】证明:四边形ABCD是平行四边形,AB=CD,ABCD,ABE=CDF,AEBD,CFBD,AEB=CFD

24、=90,在ABE和CDF中,ABECDF(AAS),AE=CF【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定的应用;证明ABECDF是解决问题的关键20为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分分组家庭用水量x/吨家庭数/户A0x4.04B4.0x6.513C6.5x9.0D9.0x11.5E11.5x14.06Fx4.03根据以上信息,解答下列问题(1)家庭用水量在4.0x6.5范围内的家庭有13户,在6.5x9.0范围内的家庭数占被调查家庭数的百分比是30%;(2)本次调查的家庭数为50户,家庭用水

25、量在9.0x11.5范围内的家庭数占被调查家庭数的百分比是18%;(3)家庭用水量的中位数落在C组;(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数【考点】扇形统计图;用样本估计总体;频数(率)分布表;中位数【分析】(1)观察表格和扇形统计图就可以得出结果;(2)利用C组所占百分比及户数可算出调查家庭的总数,从而算出D组的百分比;(3)从第二问知道调查户数为50,则中位数为第25、26户的平均数,由表格可得知落在C组;(4)计算调查户中用水量不超过9.0吨的百分比,再乘以小区内的家庭数就可以算出【解答】解:(1)观察表格可得4.0x6.5的家庭有13户,6.5x9.0范围

26、内的家庭数占被调查家庭数的百分比为30%;(2)调查的家庭数为:1326%=50,6.5x9.0 的家庭数为:5030%=15,D组9.0x11.5 的家庭数为:504136315=9,9.0x11.5 的百分比是:950100%=18%;(3)调查的家庭数为50户,则中位数为第25、26户的平均数,从表格观察都落在C组;故答案为:(1)13,30;(2)50,18;(3)C;(4)调查家庭中不超过9.0吨的户数有:4+13+15=32,=128(户),答:该月用水量不超过9.0吨的家庭数为128户【点评】本题考查了扇形统计图、统计表,解题的关键是要明确题意,找出所求问题需要的条件四、解答题:

27、本大题共3小题,21、22各9分23题10分,共28分21A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度【考点】一元一次方程的应用【专题】应用题【分析】根据题意,可以设出甲、乙的速度,然后根据题目中的关系,列出相应的方程,本题得以解决【解答】解:设甲车的速度是x千米/时,乙车的速度为(x+30)千米/时,解得,x=60,则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时【点评】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件,发现题目中的

28、数量关系,列出相应的方程22如图,抛物线y=x23x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标【考点】抛物线与x轴的交点;二次函数的性质【分析】(1)利用坐标轴上点的特点求出A、B、C点的坐标,再用待定系数法求得直线BC的解析式;(2)设点D的横坐标为m,则纵坐标为(m,),E点的坐标为(m,),可得两点间的距离为d=,利用二次函数的最值可得m,可得点D的坐标【解答】解:(1)抛物线y=x23x+与x轴相交于A、B两点,与y轴相交于点C,令y=0,可得

29、x=或x=,A(,0),B(,0);令x=0,则y=,C点坐标为(0,),设直线BC的解析式为:y=kx+b,则有,解得:,直线BC的解析式为:y=x;(2)设点D的横坐标为m,则纵坐标为(m,),E点的坐标为(m, m),设DE的长度为d,点D是直线BC下方抛物线上一点,则d=m+(m23m+),整理得,d=m2+m,a=10,当m=时,d最大=,D点的坐标为(,)【点评】此题主要考查了二次函数的性质及其图象与坐标轴的交点,设出D的坐标,利用二次函数最值得D点坐标是解答此题的关键23如图,AB是O的直径,点C、D在O上,A=2BCD,点E在AB的延长线上,AED=ABC(1)求证:DE与O相

30、切;(2)若BF=2,DF=,求O的半径【考点】切线的判定【分析】(1)连接OD,由AB是O的直径,得到ACB=90,求得A+ABC=90,等量代换得到BOD=A,推出ODE=90,即可得到结论;(2)连接BD,过D作DHBF于H,由弦且角动量得到BDE=BCD,推出ACF与FDB都是等腰三角形,根据等腰直角三角形的性质得到FH=BH=BF=1,则FH=1,根据勾股定理得到HD=3,然后根据勾股定理列方程即可得到结论【解答】(1)证明:连接OD,AB是O的直径,ACB=90,A+ABC=90,BOD=2BCD,A=2BCD,BOD=A,AED=ABC,BOD+AED=90,ODE=90,即OD

31、DE,DE与O相切;(2)解:连接BD,过D作DHBF于H,DE与O相切,BDE=BCD,AED=ABC,AFC=DBF,AFC=DFB,ACF与FDB都是等腰三角形,FH=BH=BF=1,则FH=1,HD=3,在RtODH中,OH2+DH2=OD2,即(OD1)2+32=OD2,OD=5,O的半径是5【点评】本题考查了切线的判定和性质,等腰三角形的判定,直角三角形的性质,勾股定理,正确的作出辅助线是解题的关键五、解答题:本大题共3小题,24题11分,25、26各12分,共35分24如图1,ABC中,C=90,线段DE在射线BC上,且DE=AC,线段DE沿射线BC运动,开始时,点D与点B重合,

32、点D到达点C时运动停止,过点D作DF=DB,与射线BA相交于点F,过点E作BC的垂线,与射线BA相交于点G设BD=x,四边形DEGF与ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中0xm,1xm,mx3时,函数的解析式不同)(1)填空:BC的长是3;(2)求S关于x的函数关系式,并写出x的取值范围【考点】四边形综合题【分析】(1)由图象即可解决问题(2)分三种情形如图1中,当0x1时,作DMAB于M,根据S=SABCSBDFS四边形ECAG即可解决如图2中,作ANDF交BC于N,设BN=AN=x,在RTANC中,利用勾股定理求出x,再根据S=SABCSBDFS四边形ECAG即可解

33、决如图3中,根据S=CDCM,求出CM即可解决问题【解答】解;(1)由图象可知BC=3故答案为3(2)如图1中,当0x1时,作DMAB于M,由题意BC=3,AC=2,C=90,AB=,B=B,DMB=C=90,BMDBCA,=,DM=,BM=,BD=DF,DMBF,BM=MF,SBDF=x2,EGAC,=,=,EG=(x+2),S四边形ECAG= 2+(x+2)(1x),S=SABCSBDFS四边形ECAG=3x2 2+(x+2)(1x)=x2+x+如图中,作ANDF交BC于N,设BN=AN=x,在RTANC中,AN2=CN2+AC2,x2=22+(3x)2,x=,来源:学#科#网Z#X#X#

34、K当1x时,S=SABCSBDF=3x2,如图3中,当x3时,DMAN,=,=,CM=(3x),S=CDCM=(3x)2,综上所述S=【点评】本题考查四边形综合题、等腰三角形的性质、相似三角形的性质、勾股定理等知识,解题的关键是学会分类讨论,正确画出图形,属于中考压轴题25阅读下面材料:小明遇到这样一个问题:如图1,ABC中,AB=AC,点D在BC边上,DAB=ABD,BEAD,垂足为E,求证:BC=2AE小明经探究发现,过点A作AFBC,垂足为F,得到AFB=BEA,从而可证ABFBAE(如图2),使问题得到解决(1)根据阅读材料回答:ABF与BAE全等的条件是 AAS(填“SSS”、“SA

35、S”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,ABC中,AB=AC,BAC=90,D为BC的中点,E为DC的中点,点F在AC的延长线上,且CDF=EAC,若CF=2,求AB的长;(3)如图4,ABC中,AB=AC,BAC=120,点D、E分别在AB、AC边上,且AD=kDB(其中0k),AED=BCD,求的值(用含k的式子表示)【考点】相似形综合题【分析】(1)作AFBC,判断出ABFBAE(AAS),得出BF=AE,即可;(2)先求出tanDAE=,再由tanF=tanDAE,求出CG,最后用DCGACE求出AC;(3)构造含30角的直角

36、三角形,设出DG,在RtABH,RtADN,RtABH中分别用a,k表示出AB=2a(k+1),BH=a(k+1),BC=2BH=2a(k+1),CG=a(2k+1),DN=ka,最后用NDEGDC,求出AE,EC即可【解答】证明:(1)如图2,作AFBC,BEAD,AFB=BEA,在ABF和BAE中,ABFBAE(AAS),BF=AEAB=AC,AFBC,BF=BC,BC=2AE,故答案为AAS(2)如图3,连接AD,作CGAF,在RtABC中,AB=AC,点D是BC中点,AD=CD,点E是DC中点,DE=CD=AD,tanDAE=,AB=AC,BAC=90,点D为BC中点,ADC=90,A

37、CB=DAC=45,来源:学科网F+CDF=ACB=45,CDF=EAC,F+EAC=45,DAE+EAC=45,F=DAE,tanF=tanDAE=,CG=2=1,ACG=90,ACB=45,DCG=45,CDF=EAC,DCGACE,CD=AC,CE=CD=AC,AC=4;AB=4;(3)如图4,过点D作DGBC,设DG=a,在RtBGD中,B=30,BD=2a,BG=a,AD=kDB,AD=2ka,AB=BD+AD=2a+2ka=2a(k+1),过点A作AHBC,在RtABH中,B=30BH=a(k+1),AB=AC,AHBC,BC=2BH=2a(k+1),CG=BCBG=a(2k+1)

38、,过D作DNAC交CA延长线与N,BAC=120,DAN=60,ADN=30,AN=ka,DN=ka,DGC=AND=90,AED=BCD,NDEGDC,NE=3ak(2k+1),EC=ACAE=ABAE=2a(k+1)2ak(3k+1)=2a(13k2),=【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的性质和判定,等腰三角形的性质,等腰直角三角形的性质,中点的定义,解本题的关键是作出辅助线,也是本题的难点26如图,在平面直角坐标系xOy中,抛物线y=x2+与y轴相交于点A,点B与点O关于点A对称(1)填空:点B的坐标是(0,);(2)过点B的直线y=kx+b(其中

39、k0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;(3)在(2)的条件下,若点C关于直线BP的对称点C恰好落在该抛物线的对称轴上,求此时点P的坐标【考点】二次函数综合题【分析】(1)由抛物线解析式可求得A点坐标,再利用对称可求得B点坐标;(2)可先用k表示出C点坐标,过B作BDl于点D,条件可知P点在x轴上方,设P点纵坐标为y,可表示出PD、PB的长,在RtPBD中,利用勾股定理可求得y,则可求出PB的长,此时可得出P点坐标,代入抛物线解析式可判断P点在抛物线上;(3)利用平行线和轴对称的性

40、质可得到OBC=CBP=CBP=60,则可求得OC的长,代入抛物线解析式可求得P点坐标【解答】解:(1)抛物线y=x2+与y轴相交于点A,A(0,),点B与点O关于点A对称,BA=OA=,OB=,即B点坐标为(0,),故答案为:(0,);(2)B点坐标为(0,),直线解析式为y=kx+,令y=0可得kx+=0,解得x=,OC=,PB=PC,点P只能在x轴上方,如图1,过B作BDl于点D,设PB=PC=m,则BD=OC=,CD=OB=,PD=PCCD=m,在RtPBD中,由勾股定理可得PB2=PD2+BD2,即m2=(m)2+()2,解得m=+,PB+,P点坐标为(, +),当x=时,代入抛物线

41、解析式可得y=+,点P在抛物线上;(3)如图2,连接CC,ly轴,OBC=PCB,又PB=PC,PCB=PBC,PBC=OBC,又C、C关于BP对称,且C在抛物线的对称轴上,即在y轴上,PBC=PBC,OBC=CBP=CBP=60,在RtOBC中,OB=,则BC=1OC=,即P点的横坐标为,代入抛物线解析式可得y=()2+=1,P点坐标为(,1)【点评】本题为二次函数的综合应用,涉及知识点有轴对称的性质、平行线的性质、勾股定理、等腰三角形的性质、二次函数的性质等在(2)中构造直角三角形,利用勾股定理得到关于PC的长的方程是解题的关键,在(3)中求得OBC=CBP=CBP=60是解题的关键本题考查知识点较多,综合性较强,难度适中30

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁