《初高中数学衔接教育资料.ppt》由会员分享,可在线阅读,更多相关《初高中数学衔接教育资料.ppt(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初高中数学衔接教育资料初高中数学衔接教育资料新课标人教A板 中江县城北中学兰序国 第一部分,如何做好高、初中数学的衔接 第一讲第一讲 如何学好高中数学如何学好高中数学 初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥、乏味、抽象、晦涩,有些章节如听天书。在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的
2、兴趣。造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。下面就对造成这种现象的一些原因加以分析、总结。希望同学们认真吸取前人的经验教训,搞好自己的数学学习。一 高中数学与初中数学特点的变化 1 数学语言在抽象程度上突变。不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。确实,初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。2 思维方法向理性层次跃迁。高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建
3、立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。因此,初中学习中习惯于这种机械的、便于操作的定势方式。高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。当然,能力的发展是渐进的,不是一朝一夕的。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。高一新生一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证型思维。3 知识内容的整体数量剧增。高中数学在知识内容的“量”上急剧增加了。例如:高一代数第一章就有基本概念52个,数学符号28个;立体几何
4、第一章有基本概念37个,基本公理、定理和推论21个;两者合在一起仅基本概念就达89个之多,并集中在高一第一学期学习,形成了概念密集的学习阶段。加之高中一年级第一学期只有七十多课时,辅助练习、消化的课时相应地减少了。使得数学课时吃紧,因而教学进度一般较快,从而增加了教与学的难度。这样,不可避免地造成学生不适应高中数学学习,而影响成绩的提高。这就要求:第一,要做好课后的复习工作,记牢大量的知识。第二,要理解掌握好新旧知识的内在联系,使新知识顺利地同化于原有知识结构之中。第三,因知识教学多以零星积累的方式进行的,当知识信息量过大时,其记忆效果不会很好,因此要学会对知识结构进行梳理,形成板块结构,实行
5、“整体集装”。如表格化,使知识结构一目了然;类化,由一例到一类,由一类到多类,由多类到统一;使几类问题同构于同一知识方法。第四,要多做总结、归类,建立主体的知识结构网络。二 不良的学习状态1 学习习惯因依赖心理而滞后。初中生在学习上的依赖心理是很明显的。第一,为提高分数,初中数学教师将各种题型都一一罗列,学生依赖于教师为其提供套用的“模子”;第二,家长望子成龙心切,回家后辅导也是常事。升入高中后,教师的教学方法变了,套用的“模子”没有了,家长辅导的能力也跟不上了。许多同学进入高中后,还象初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动权。表现在不定计划,坐等上课,课前没有预习,
6、对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。2 思想松懈。有些同学把初中的那一套思想移植到高中来。他们认为自已在初一、二时并没有用功学习,只是在初三临考时才发奋了一、二个月就轻而易举地考上了高中,有的还是重点中学里的重点班,因而认为读高中也不过如此。高一、高二根本就用不着那么用功,只要等到高三临考时再发奋一、二个月,也一样会考上一所理想的大学的。存有这种思想的同学是大错特错的。有多少同学就是因为高一、二不努力学习,临近高考了,发现自己缺漏了很多知识再弥补后悔晚矣。3 学不得法。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心
7、听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆;课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。还有些同学晚上加班加点,白天无精打采,白白浪费青春,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。4 不重视基础。一些“自我感觉良好”的同学,常轻视基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”,造成得不偿。5 进一步学习条件不具备。高中数学
8、与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。如二次函数值的求法、实根分布与参变量的讨论、,三角公式的变形与灵活运用、空间概念的形成、排列组合应用题及实际应用问题等。有的内容还是初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,就必然会跟不上高中学习的要求。三 科学地进行学习高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动学习为主动学习,才能提高学习成绩。1 培养良好的学习习惯。反复使用的方法将变成人们的习惯。什么是良好的学习习惯?良好的学习
9、习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。(1)制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。(2)课前自学是上好新课、取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。自学不能走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。(3)上课是理解和掌握基础知识、基本技能和基本方法的关键环节。“学然后知不
10、足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。(4)及时复习是高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。(5)独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程也是对意志毅力的考验,通过运用使对所学知识由“会”到“熟”。(6)解决疑难是指对独立完成作业过程中暴露出来对知识理解
11、的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神。做错的作业再做一遍。对错误的地方要反复思考。实在解决不了的要请教老师和同学,并要经常把易错的知识拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,使所学到的知识由“熟”到“活”。(7)系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。(8)课外学习包括阅读课外
12、书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富同学们的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情 2 循序渐进,防止急躁。由于同学们年龄较小,阅历有限,为数不少的同学容易急躁。有的同学贪多求快,囫囵吞枣;有的同学想靠几天“冲刺”一蹴而就;有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。同学们要知道,学习是一个长期地巩固旧知、发现新知的积累过程,决非一朝一夕可以完成的。为什么高中要学三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实
13、,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。3 注意研究学科特点寻找最佳学习方法。数学学科担负着培养运算能力、逻辑思维能力、空间想象能力以及运用所学知识分析问题、解决问题的能力的重任。它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理。方法因人而异,但学习的四个环节(预习、上课、作业、复习)和一个步骤(归纳总结)是少不了的。总之:高中数学学习是中学阶段承前启
14、后的关键时期,高中数学的难度和思维模式与初中都不大一样,能否适应也是能否学好的关键,精锐教育优秀教师给到即将升入高中和高中在读学生如下建议:首先,同学们要认识到高中数学的特点。高中数学是初中数学的提高和深化,初中数学在教材表达上采用形象通俗的语言,研究对象多是常量,侧重于定量计算和形象思维,而高中数学语言表达抽象,逻辑严密,思维严谨,知识连贯性和系统性强。其次,同学们要适应高中数学的学习模式。面对每天内容多,难度大,节奏快的新知识,要做好笔记,及时巩固复习,课堂上没有听懂的地方一定要及时问老师。对待家庭作业一定要做到独立和全力。要尽快找到一种自己适应的学习方法,适应老师的教学模式,使自己学得快
15、,学得好。然后,同学们要正确面对学习数学中遇到的困难。在开始学习高中数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,有一种“初生牛犊不怕虎”的精神,愈挫愈勇,千万不能让问题堆积,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题和解决问题的能力。还有,同学们要养成良好的学习习惯与个性品质。上课前要预习,预习可以让自己熟悉新课内容,找出难点疑点,从而上新课时提高了课堂效率,使知识学得更加牢固。课堂全神贯注,思维跟着老师走,做好笔记。课后要及时复习巩固,不懂的及时问老师。另外,还要有钻研精神,遇到难题不要轻易放弃,积极思考,提高思维能力。解
16、完题目之后,要养成不失时机地回顾下述问题:解题过程中是如何分析联想探索出解题途径的?使问题获得解决的关键是什么?在解决问题的过程中遇到了哪些困难?又是怎样克服的?这样,通过解题后的回顾与反思,就有利于发现解题的关键所在,并从中提炼出数学思想和方法,如果忽视了对它的挖掘,解题能力就得不到提高。因此,在解题后,要经常总结题目及解法的规律,只有勤反思,才能“站得高山,看得远,驾驭全局”,才能提高自己分析问题的能力。在数学学习过程中,对一些典型问题,同学们应善于合作,各抒己见,互相讨论,取人之长,补己之短,也可主动与老师交流,说出自己的见解和看法,在老师的点拨中,他的思想方法会对你产生潜移默化的影响。
17、因此,只有不断交流,才能相互促进、共同发展,提高表达能力。如果固步自封,就会钻牛角尖,浪费不必要的时间。“学而不思则罔,思而不学则贻”。在学习数学的过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,进行独立思考,注重新旧知识的内在联系,把握概念的内涵和外延,做到一题多解,一题多变,不满足于现成的思路和结论,善于从多侧面、多方位思考问题,挖掘问题的实质,勇于发表自己的独特见解。因为只有思索才能生疑解疑,透彻明悟。一个人如果长期处于无问题状态,就说明他思考不够,学业也就提高不了。最后,精锐教育老师给同学们以下几个建议:1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师为备战高考而加
18、的课外知识。2、建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。3、记忆数学规律和数学小结论。4、与同学建立好关系,争做小老师,形成数学学习互助组。5、争做数学课外题,加大自学力度。6、反复巩固,消灭前学后忘。7、学会总结归类。可:从数学思想分类从解题方法归类从知识应用上分类希望同学们在高中数学学习中可以艰苦奋斗,勇往直前,相信吧,迎接你们的将是辉煌的黎明。第二部分,现有初高中数学知识存在以下“脱节1立方和与差的公式初中已删去不讲,而高
19、中的运算还在用。2因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。3二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。4初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。5二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于
20、简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。6图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。7含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。方程、不等式、函数的综合考查常成为高考综合题。8几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及。另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。第
21、三部分 初中数学与高中数学衔接紧密的知识点 1 绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。正数的绝对值是他本身,负数的绝对值是他的相反数,0的绝对值是0,即两个负数比较大小,绝对值大的反而小两个绝对值不等式:或:2 乘法公式:平方差公式:立方差公式:立方和公式:完全平方公式:完全立方公式:3 分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。方法:提公因式法,运用公式法,分组分解法,十字相乘法。4 一元一次方程:在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。解一元一次方程的步骤:去分母,移项,合并同类项,未知
22、数系数化为1。关于方程解的讨论当 时,方程有唯一解:当 时,方程无解 当 时,方程有无数解;此时任一实数都是方程的解。5 二元一次方程组:(1)两个二元一次方程组成的方程组叫做二元一次方程组。(2)适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。(3)二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。(4)解二元一次方程组的方法:代入消元法,加减消元法。6 不等式与不等式组(1)不等式:用符不等号(、)连接的式子叫不等式。不等式的两边都加上或减去同一个整式,不等号的方向不变。不等式的两边都乘以或者除以一个正数,不等号方向不变。不等式的两边都乘以或除以同一个负数,
23、不等号方向相反。(2)不等式的解集:能使不等式成立的未知数的值,叫做不等式的解。一个含有未知数的不等式的所有解,组成这个不等式的解集。求不等式解集的过程叫做解不等式。(3)一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。(4)一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。求不等式组解集的过程,叫做解不等式组。7 一元二次方程:方程有两个实数根 方程有两根同号 方程有两根异号 韦达定理及应用:8 函数 (1)变量:因变量,自
24、变量。在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。(2)一次函数:若两个变量y,x间的关系式可以表示成y=kx+b(b为常数,k不等于0)的形式,则称y是x的一次函数。当b=0时,y称x是的正比例函数。(3)一次函数的图象及性质把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。正比例函数y=kx的图象是经过原点的一条直线。在一次函数中当k0,b0,则经2、3、4象限;当k0时,则经1、2、4象限;当k0,b0,b0时,则经1、2、3象限。当k0时,y的值随x值的增大而增大,当k0时,y的值随x值的增大而减少。(4)二次函数:一般式:对称轴是:顶点是:顶点式:(),对称轴是:x=-m 顶点是:(-m,k)交点式:(),其中(),()是抛物线与x轴的交点