《2023年生物制药考试.docx》由会员分享,可在线阅读,更多相关《2023年生物制药考试.docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年生物制药考试 生物制药试题 1、简述基因工程药物生产的基本过程? (1)目的基因的分离和提取(2).目的基因与载体结合构建重组体(3)重组体导入宿主细胞(4)重组体的筛选、鉴定和分析(5)目的基因的表达 上游阶段:主要是分离目的基因、构建工程菌。目的基因获得后,最主要的就是目的基因的表达。选择基因表达系统主要考虑的是保证表达的蛋白质功能,其次是表达的量和分离纯化的难易。此阶段的工作主要在实验室内完成。 下游阶段:从工程菌的大量培养一直到产品的分离纯化和质量控制。此阶段是将实验室的成股票产业化、商品化,主要包括工程菌大规模发酵最佳参数的确立,新型生物反应器的研制,高效分离介质及装置的开
2、发,分离纯化的优化控制,高纯度产品的制备技术,生物传感器等一系列仪器表的设计和制造,电子计算机的优化控制等。 2.现代生物技术包括哪些?在生物制药领域的主要应用是什么? 酶工程、发酵工程、细胞工程、基因工程、蛋白质工程 1.抗生素不仅可用于治疗细菌感染而且可用于治疗肿瘤以及病毒引起的疾病。 一个好的抗生素应具有较广的抗菌谱外,还应具有较好的选择性,不产生过敏和耐药性,有高度的稳定性,收率高,成本低,适于工业生产.目前生产和应用的抗生素还不能完全满足以上要求 利用发酵技术生产的“抗生素”可以把微生物代谢产生有用的物质起到对人类疾病的预防和治疗。还可以通过发酵工程技术生产维生素类药物,多烯脂肪酸,
3、医用酶制剂。 2运用固定化技术制备药物及中间体固定化技术主要指酶、完整细胞的固定化,采用固定化技术后,酶既不会流失,也不会污染产 品质量。固定化细胞可以使酶在细胞内环境中发挥作用,酶活力损失少,而且免除了破碎细 胞提取胞内酶的手续。 固定化酶在经过滤或离心后可以长期重复使用, 而且它的稳定性也得 到提高,在实际应用中,固定化酶可以装在反应器中,使整个生产连续化进行,有利于生产 的自动化控制,提高生产率。 3利用动物、植物细胞和组织培养来提供药物,通过 动物细胞培养,已可获得病毒疫茵、干扰素、激素、单克隆抗体、免疫制剂及特殊的酶和物质。把植 物细胞或组织从植物体内分离出来,并在比较简单的培养基中
4、进行培养可获得药品,具有不受气候影响、稳定供应、在 控制条件下生产、可采用连续方法生产等优点。 4.基因工程技术在药物生产过程中主要用子改良工业生产菌种、提高菌种生产能力和性 能、提高有效组分含量、简化工艺提高收率、有利于提取精制等后处理工序,并可大大减少 环境污染等。随着对各种工业生产的微生物药物生物合成途径的深人了解以及基因重组技术的不断发展, 应用基因工程技术定向构建高产菌株, 改进药物生产工艺。 3、什么是人类基因组计划?它对生物制药有什么意义? 定义:人类基因组计划是美国科学家于1985年率先提出的,旨在阐明人类基因组30亿个碱基对的序列,发现所有人类基因并搞清其在染色体上的位置,破
5、译人类全部遗传信息,使人类第一次在分子水平上全面地认识自我。 意义:1.人类基因组研究为生物制药提供了明确的目标,对人类基因组的研究最终将阐明疾病的发生机理和遗传基础。而这些问题一旦明确,生物制药就有了明确的目标,从而极大地减少药物研究的盲目性。 2.人类基因组研究推动了基因工程药物的发展 通过人类基因组研究,许多致病基因将被查明。无论在疾病的诊断还是防治方面,都为基因工程药物提供了广阔的研究领域。通过正常基因和致病基因的比较,我们将能发现征服疾病的途径,这些途径可能相当一部分是基因工程药物。因此,人类基因组的研究为生物制药提供了难得的发展机遇。可以相信,随着人类基因组研究的进展,通过转基因工
6、程或克隆技术生产的试剂盒或治疗药品将逐渐增多。同时,基因工程药物的发展也使治疗成本大幅降低, 4、什么是分子标记?简述分子标记在药用植物中的应用。 定义:分子标记是生物遗传标记的一种。指受基因控制并且能够稳定遗传的,能代表个体或群体的 遗传特征,并可被用作遗传分析的物质。 广义的分子标记是指可遗传的并可检测的DNA序列或蛋白质。狭义分子标记是指能反映生物个体或种群间基因组中某种差异的特异性DNA片段。 概念:是以个体间遗传物质内核苷酸序列变异为基础的遗传标记,是DNA 水平遗传多态性的直接的反映。 应用: DNA作为植物的遗传物质,具有稳定、可靠、不受外界因素影响的特点,目前利用不同种类的分子
7、标记开展中草药植物的种属分类工作取得了很大进展。采用的分子标记多种多样,以RAPD标记较多见。所涉及的中草药植物总计达到近百种之多,对于不同的中草药的不同种的分类来讲,利用分子标记技术不仅可以对分析结果进行聚类分析,而且可以获得与种有关的DNA 带型。 1.近缘药用植物品种的DNA分子鉴定近缘药用植物品种的鉴定往往采用传统的生药学方法,但近缘药用植物品种在外观形态、组织特征、化学成分等方面十分相似,难以准确辨认。而DNA分子遗传标记能够从分子水平上检测生物的遗传背景差异。 2.药用植物道地性分析药材的“道地性”是中草药研究的一个重要的方面。采用DNA分子诊断技术并辅以形态学分析,可以从分子水平
8、上来揭示药材的“道地性”。 3.分子标记辅助药用植物育种 品质选育传统上主要是依据一些形态、生理生化性状选择亲本及子代。分子标记相对于形态标记具有无可比拟的优越性。在基因定位基础上,借助与有利基因紧密连锁的DNA标记,在群体中选择具有某些理想基因型和基因型组合的个体,结合常规手段,培育优良品种。这种将标记基因型鉴定整合于经典育种研究中的新型育种方法,称为分子标记辅助选择。 利用分子标记技术在农作物中定位了大量的主效和微效基因,有关的分子标记辅助选择已成功展开并获得了显著的进展。在中草药植物的育种研究方面,可以利用分子标记在育种过程中进行亲本性状的鉴定、检测,辅助选择亲本及子代,加速品种的培育、
9、缩短育种周期。 5、什么是反义RNA?与传统药物相比,反义RNA作为基因治疗药物的主要优点。 定义:反义RNA是指与mRNA互补的RNA分子,也包括与其它RNA互补的RNA分子。由于核糖体不能翻译双链的RNA,所以反义RNA与mRNA特异性的互补结合, 即抑制了该mRNA的翻译。通过反义RNA控制mRNA的翻译是原核生物基因表达调控的一种方式。 定义:通过人工合成反义RNA的基因, 并将其导入细胞内转录成反义RNA, 即能抑制某特定基因的表达,阻断该基因的功能,有助于了解该基因对细胞生长和分化的作用。 反义RNA,根据反义RNA的作用机制可将其分为3类:类反义RNA直接作用于靶mRNA的S D
10、序列和(或)部分编码区,直接抑制翻译,或与靶mRNA结合形成双链RNA,从而易被RNA酶 降解;类反义RNA与mRNA的非编码区结合,引起mRNA构象变化,抑制翻译;类反义RNA则直接抑制靶mRNA的转录。 1.从癌组织中分离出mRNA, 合成相应的反义RNA。将反义RNA 引入癌细胞阻止癌基因的表达, 抑制癌蛋白的产生, 从而可控制细胞的恶性增殖。反义RNA 可以特异性地抑制癌 基因的异常表达或抑制肿瘤癌细胞特异蛋白质的表达, 诱导肿瘤癌细胞调亡, 因而可应用于癌症的发病机制和治疗研究。 2.在治疗病毒性感染疾病上, 由于病毒核酸的序列比较明确, 易于人工合成相应的反义寡聚核苷酸,来抑制病毒
11、基因的表达。反义RNA 能有效地阻断La Croe 病毒( LCV ) , 并且来自dengne Viruses 区的反义RNA 更能有效阻止同源病毒的复制, 且阻断时间和最小片段的反义RNA都能确定, 它可以弥补接种等传统方法存在的不易达到阻止效果和效率较低的缺点。 (1)特异性强反义RNA 在宿主细胞内可以特异性地识别、关闭某一基因, 阻断靶基因的表达, 甚至可以选择性地抑制单一启动子控制的多基因区内某一基因的表达, 而不影响其它基因的表达。 (2)操作简便, 靶mRNA 范围广可以大量地设计合成反义RNA ( 或反义RNA片段) , 仅需要知道病毒、基因或病变细胞的序列信息及其编码蛋白的功能。多个反义RNA 可同时封闭多个基因, 在核内和胞浆中都能发挥作用, 用于治疗多种疾病。 (3)安全性好 反义RNA 只与特定的mRNA 结合, 不会因改变基因结构而引起突变, 在剂量多的情况下可以被RNase 水解。与合成药物相比, 副作用较小。而且将含有反义RNA 基因的载体引入原代细胞, 可形成持续稳定的感染细胞系, 使后代具有遗传的抗病毒或抗病特性。 生物制药考试 生物制药考试重点 生物制药 生物制药 生物制药 生物制药论文 生物制药1 生物制药设备 生物制药感想 浅谈生物制药