《在“分数除以整数”教学中渗透数形结合思想方法例谈.pdf》由会员分享,可在线阅读,更多相关《在“分数除以整数”教学中渗透数形结合思想方法例谈.pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、欢迎您阅读并下载本文档,本文档来源于互联网,如有侵权请联系删除!我们将竭诚为您提供优质的文档!在“分数除以整数”教学中渗透数形结合思想方法例谈-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN 欢迎您阅读并下载本文档,本文档来源于互联网,如有侵权请联系删除!我们将竭诚为您提供优质的文档!2 在“分数除以整数”教学中渗透数形结合思想方法例谈 【案例背景】“分数除法”作为数的运算课程内容的一部分,很多算理教学都要借助于图形的直观刻画帮助学生理解,再加上小学生的思维大多是以形象思维为主,理解抽象知识的难度较大。因此,在实际教学中,如果教师能够科学运用数与形的有效结合,把抽象
2、内容形象化,将有助于学生理解数学的实质。【教学片段】师:(出示例题:量杯里有升果汁,平均分给 2 个小朋友喝,每人可以喝多少升)2 等于多少呢你能先画图表示然后再列式吗 生:我把升平均分成两份,分母不变,用 42=2,就等于升。师:其他同学能看出图中的哪一部分表示升吗 生:把 4 份平均分成两份,每份是 2,画阴影部分表示升。师小结:从图中我们可以看出,把升果汁中的 4 平均分成两份,每份表示 2,也就是 42=2,因此2=升。(板书)欢迎您阅读并下载本文档,本文档来源于互联网,如有侵权请联系删除!我们将竭诚为您提供优质的文档!3 师:还有不同的算法吗 生:把升平均分成两份,求每份是多少就是求
3、升的是多少,我用 约分后就得出升。师:听懂的请举手,你听懂什么了 生 1:我听懂了除以 2 就等于乘。生 2:我听懂了平均分成两份,就是求这个数的是多少。师:分数除法虽然不能约分,但我们可以把除法转化成分数乘法,约分后再计算。可以写成2=升。(板书)师:如果把果汁分给 3 位小朋友喝,你还能画图表示吗(不能)师:不能画图了怎么办呢你选择黑板上的哪一种算法解决 生 1:4 平均分成 3 份不好分,我选择的是第二种方法,3=升。生 2:画图可以表示出来,但把 4 份平均分成 3 份不太好分,3=我选择的也是第二种算法。生 3:画图虽然不好表示,但第一种算法还是能算出来,可以把3=3=升。欢迎您阅读
4、并下载本文档,本文档来源于互联网,如有侵权请联系删除!我们将竭诚为您提供优质的文档!4 师:那你觉得哪一种算法好一些 生:我觉得第二种算法更好,算分数除法时只要想分数乘法就可以了。师:正如大家所说的,一般来说,我们在计算分数除以整数时,先把分数除法转化成分数乘法,然后再计算。【教学反思】1.“学会画图”是渗透数形结合思想方法的基础 “数形结合”就是帮助学生在研究数学问题时,由数思形、见形思数考虑问题的一种思想方法。教学中,学生可以通过画图将抽象的数学语言与直观的图形联系起来,使抽象思维和形象思维有效结合,在尝试对图形进行处理时,充分发挥直观对抽象的支柱作用,揭示数和形之间的内在联系。课堂上,教
5、师强调将2 的计算方法通过直观的形式表现出来。在学生尝试后出现了三种方法,从第一种方法“画阴影”可以看出,学生对图形进行了二次处理,由整数除法的算理迁移至分数除法,运用“把 4 份平均分成 2份,每份是 2”的方法得出计算结果,这一画图的过程充分解释了的含义,使学生头脑中关于升的表象得以视觉化。第二种方法在书写格式上不够规范,但这恰好是一个“美丽的错误”,老师以“我们在进行什么计算时约分欢迎您阅读并下载本文档,本文档来源于互联网,如有侵权请联系删除!我们将竭诚为您提供优质的文档!5 的”的问题将分数乘法与分数除法的计算联系起来。第三种方法是对前两种方法的有效补充,学生将2 转化成 进行计算,把
6、抽象的数量关系转化为适当的几何图形,借助于直观形象模型理解抽象的计算算理,使抽象的数学知识形象化。2.“学会分析”是渗透数形结合思想方法的升华 上述教学中,老师首先鼓励学生结合画图采用不同的方法计算,在学生出现了2=升和2=升两种算法,老师并没有马上进行算法的优化,而是由“如果把果汁分给 3 位小朋友喝,你还能画图表示吗”问题的解决让学生自主进行优化,因为 3=无法像2=升那样进行计算,在学生产生认知冲突之后产生“优化算法”的需要,从而体会“乘一个数的倒数”方法的简便性。“不能画图了怎么办”这个问题帮助学生学会描述自己的思维活动,把数量与图形结合起来反思自己是怎样发现、解决问题的,列式计算3=有助于学生产生探究的欲望,在逐步的比较、交流与分析中理解分数除法的算理,形成良好的数学意识和思想。但孩子的创造力永远是老师无法想象的,在3=行不通的情况下,又想出了3=3=欢迎您阅读并下载本文档,本文档来源于互联网,如有侵权请联系删除!我们将竭诚为您提供优质的文档!6 升的方法,真是让人意外、惊喜,喜欢这样的数学课堂!(作者单位:江苏省南京市栖霞区迈皋桥中心小学)