贵州大学-固体物理学教案1教学内容.ppt

上传人:豆**** 文档编号:66743409 上传时间:2022-12-19 格式:PPT 页数:67 大小:2.08MB
返回 下载 相关 举报
贵州大学-固体物理学教案1教学内容.ppt_第1页
第1页 / 共67页
贵州大学-固体物理学教案1教学内容.ppt_第2页
第2页 / 共67页
点击查看更多>>
资源描述

《贵州大学-固体物理学教案1教学内容.ppt》由会员分享,可在线阅读,更多相关《贵州大学-固体物理学教案1教学内容.ppt(67页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、贵州大学新型光电子材料与技术研究所贵州大学-固体物理学教案1贵州大学新型光电子材料与技术研究所规则网络规则网络无规网络无规网络贵州大学新型光电子材料与技术研究所Al65Co25Cu10合金合金准晶准晶贵州大学新型光电子材料与技术研究所1.点阵和基元点阵和基元空间点阵:空间点阵:晶体结构中的等同点在三维空间的集合。如:二维点阵贵州大学新型光电子材料与技术研究所等同点:等同点:化学、物理性质及几何环境完全相同的点。基元:基元:晶体结构的基本单元。晶格:晶格:描述晶体几何结构的空间网格。格点:格点:晶格中直线的交点,即空间点阵中的等同点,又称为阵点或结点。晶体结构晶体结构=点阵点阵+基元基元贵州大学

2、新型光电子材料与技术研究所2.原胞和基矢原胞和基矢原胞原胞:晶体结构中只考虑周期性时体积最小的重复单元。基矢基矢:晶格中任意方向上的最小重复矢量,其长度为该方向的排列周期,即相邻格点间的距离。原胞是以基矢为边构成的平行六面体平行六面体。基矢的选取是任意的,故原胞形状不唯一,但给定晶格原胞的体积原胞的体积是一定的。贵州大学新型光电子材料与技术研究所基矢选取的任意性基矢选取的任意性Rl0 a1a2贵州大学新型光电子材料与技术研究所基矢:基矢:格矢:格矢:原胞体积:原胞体积:每个原胞包含且只含一个格点,原胞体积即晶每个原胞包含且只含一个格点,原胞体积即晶格中一个格点平均所占有的体积。格中一个格点平均

3、所占有的体积。基矢和原胞可完全地描述晶格的周期性特征。基矢和原胞可完全地描述晶格的周期性特征。贵州大学新型光电子材料与技术研究所晶胞:不仅考虑晶格的周期性,同时反映其晶胞:不仅考虑晶格的周期性,同时反映其对称性时所选取的最小重复单元。对称性时所选取的最小重复单元。晶胞的基矢称为轴矢,即晶体坐标系中坐标晶胞的基矢称为轴矢,即晶体坐标系中坐标轴方向的单位矢量:轴方向的单位矢量:晶格常数:晶格常数:晶胞体积:晶胞体积:0 贵州大学新型光电子材料与技术研究所格矢:格矢:(l,m,n为任意整数)晶胞晶胞选取:尽可能多的直角,尽可能少的格点数。格点分布及晶胞中格点数目:格点分布及晶胞中格点数目:简单格子(

4、角顶):81/8=1,体心格子(角顶+平行六面体中心):81/8+1=2,底心(角顶+一对面的中心):81/8+21/2=2,面心(角顶+每个面的中心):81/8+61/2=4贵州大学新型光电子材料与技术研究所4.Wigner-Seitz原胞(对称性原胞)原胞(对称性原胞)贵州大学新型光电子材料与技术研究所体心立方的基矢和体心立方的基矢和WignerSeitz原胞原胞贵州大学新型光电子材料与技术研究所面心立方基矢、原胞和面心立方基矢、原胞和WignerSeitz原胞原胞贵州大学新型光电子材料与技术研究所1.2 十四种布拉维格子和七大晶系十四种布拉维格子和七大晶系布拉维点阵的晶胞类型七大晶系贵州

5、大学新型光电子材料与技术研究所1.布拉维点阵的晶胞布拉维点阵的晶胞类型类型布拉维格子:由全同原子组成的晶格(单式布拉维格子:由全同原子组成的晶格(单式格子,每个原胞中只有一个原子)。纯金属格子,每个原胞中只有一个原子)。纯金属多为单式格子。多为单式格子。Cu,Ag,Au,Fe,Na,Al贵州大学新型光电子材料与技术研究所复式格子:由两种或两种以上原子组成的晶复式格子:由两种或两种以上原子组成的晶格,由多个单式格子平移套构而成,各种原格,由多个单式格子平移套构而成,各种原子组成的晶格称为子晶格。各种化合物,某子组成的晶格称为子晶格。各种化合物,某些单质(金刚石、些单质(金刚石、Si、Ge等)。等

6、)。贵州大学新型光电子材料与技术研究所贵州大学新型光电子材料与技术研究所按晶格对称性及格点在晶胞中的排列位置:按晶格对称性及格点在晶胞中的排列位置:P:简单:简单Bravais格子格子 C:底心:底心Bravais格子格子 I:体心:体心Bravais格子格子 F:面心:面心Bravais格子格子 R:三方三方Bravais格子格子 H:六方六方Bravais格子格子 按对称性晶格的种类只有十四种类型按对称性晶格的种类只有十四种类型十四种布拉维格子。十四种布拉维格子。贵州大学新型光电子材料与技术研究所OrthorhombicPCIFTriclinicPMonoclinicPC贵州大学新型光电子

7、材料与技术研究所PIFCubicHexagonalHTetragonalPIRhombohedralR贵州大学新型光电子材料与技术研究所2.晶系:晶系:按晶格对称性可将十四种Bravais划分为 七大晶系 三斜晶系三斜晶系Triclinic:abc,单斜晶系单斜晶系Monoclinic:abc,=90 正交晶系正交晶系(斜方)Orthorhombic:ab c,=90 四方晶系四方晶系Tetragonal:a=b c,=90 立方晶系立方晶系Cubic:a=b=c,=90 菱方晶系菱方晶系Rhombohedral:a=b=c,=60,90,120和10928 六方晶系六方晶系Hexagonal

8、:a=b c,=90,=120贵州大学新型光电子材料与技术研究所1.3 典型的晶体结构典型的晶体结构面心立方及有关的复式格子 面心立方,氯化钠型结构,金刚石结构,闪锌矿型结构体心立方及氯化铯结构密集型结构 六角密集结构,立方密集结构返回贵州大学新型光电子材料与技术研究所1.3 典型晶体结构典型晶体结构 原胞基矢:原胞基矢:格点坐标:格点坐标:1.面心立方结构面心立方结构(fcc)0贵州大学新型光电子材料与技术研究所2.NaCl结构结构贵州大学新型光电子材料与技术研究所 NaCl结构可视为由Cl-和Na+组成的两套fcc套而形成,每个晶胞中有8个离子:4个Cl-和Na+,其平移关系为:贵州大学新

9、型光电子材料与技术研究所3.金刚石结构金刚石结构00000贵州大学新型光电子材料与技术研究所金刚石结构是由同种原子组成的复式格子,位于立方体顶角及面心的原子与位于立方体内部 的四个原子的周围环境不同,应视为非全同原子。金刚石结构也可视为两套fcc套构而成,每个晶胞内包含8个原子(全部为C原子)其平称关系为:贵州大学新型光电子材料与技术研究所4.半导体半导体Si、Ge的结构常的结构常 见的元素半导体见的元素半导体Si、Ge 均具有金刚石结构均具有金刚石结构贵州大学新型光电子材料与技术研究所5.石墨其及结构石墨其及结构贵州大学新型光电子材料与技术研究所6.C60的结构及的结构及C纳米管纳米管贵州大

10、学新型光电子材料与技术研究所7.闪锌矿闪锌矿 闪锌矿结构类似于金 刚石结构,子晶格的套构关系完全相同,只是两套面心立方由不同原子构成。贵州大学新型光电子材料与技术研究所8.钙钛矿结构钙钛矿结构钙钛矿中的氧八面体钙钛矿中的角顶、体心和三对面心上的原子互不等价,因而是由五套简立方套构而成。贵州大学新型光电子材料与技术研究所9.体心立方结构体心立方结构(bcc)原胞基矢:原胞基矢:格点坐标:格点坐标:0贵州大学新型光电子材料与技术研究所10.CsCl结构结构CsCl结构中位于立方体顶角和体心位置上的结构中位于立方体顶角和体心位置上的原子互不等价,可视为两套简立方套构而成。原子互不等价,可视为两套简立

11、方套构而成。贵州大学新型光电子材料与技术研究所11.六角密堆积结构六角密堆积结构贵州大学新型光电子材料与技术研究所12.立方密堆积结构立方密堆积结构 ABCABC贵州大学新型光电子材料与技术研究所 非晶网络结构非晶网络结构:返回贵州大学新型光电子材料与技术研究所1.4 晶面和米勒指数晶面和米勒指数1.晶列和晶向指数2.晶面和晶面指数3.米勒指数贵州大学新型光电子材料与技术研究所1.4 晶面和米勒指数晶面和米勒指数1.晶列和晶向指数晶列和晶向指数晶列晶列晶体点阵中包含无数格点的直线。晶体点阵中包含无数格点的直线。晶向指数晶向指数标志晶列方向的一组互质整数,标志晶列方向的一组互质整数,即晶列直线的

12、方向余旋之互质整数比:即晶列直线的方向余旋之互质整数比:l l1 1l l2 2l l3 3 (原胞基矢坐标系)(原胞基矢坐标系)或或lmnlmn(晶胞基矢坐标系)(晶胞基矢坐标系)贵州大学新型光电子材料与技术研究所 常用晶列的指数常用晶列的指数OA:100;OB:010;OC:001;OD:111;OE:110;相互平行具有相同的晶向指数,且平行晶列上格相互平行具有相同的晶向指数,且平行晶列上格 点排列周期相同。负号写在相应指数上方。点排列周期相同。负号写在相应指数上方。A100D0010BE001111110贵州大学新型光电子材料与技术研究所晶向指数的计算:晶向指数的计算:过原点的晶列,只

13、要知道晶列上任一格点的格过原点的晶列,只要知道晶列上任一格点的格矢:矢:则:则:不过原点的晶列,则需知道晶列上两个格点不过原点的晶列,则需知道晶列上两个格点A和和B的格矢:的格矢:贵州大学新型光电子材料与技术研究所 等效晶向(等效方向):由晶体对称性联系等效晶向(等效方向):由晶体对称性联系 的一组晶列方向,记为的一组晶列方向,记为 l m n 。例:立方晶体等效方向:例:立方晶体等效方向:100 贵州大学新型光电子材料与技术研究所2.晶面和晶面指数晶面和晶面指数晶面晶面晶体点阵中的阵点也可以看作是排列在一系列相互平行的平面(晶面)上,晶格中的格点平面称为晶面。晶面指数晶面指数表征晶面方向的一

14、组互质整数:晶面法线之方向余旋的互质整数比。贵州大学新型光电子材料与技术研究所晶面指数与晶面在坐标轴上的截距的关系晶面指数与晶面在坐标轴上的截距的关系:OA rB st Cn贵州大学新型光电子材料与技术研究所阿羽依有理指数定律:三基矢之端点必落在晶面簇之某一晶面上,故:式中h1、h2、h3为整数,所以晶面指数可表为三互质整数之比,或者说晶面截距必为有理数。贵州大学新型光电子材料与技术研究所 常见简单晶面常见简单晶面:0ABCD(101)OABC(111)贵州大学新型光电子材料与技术研究所等效晶面:由晶体对等效晶面:由晶体对称性联系的一组晶面,称性联系的一组晶面,记为记为hkl.例:立方晶系的例

15、:立方晶系的100.六方晶系采用四轴定六方晶系采用四轴定向,因而其晶向(晶向,因而其晶向(晶面)指数也由四位构面)指数也由四位构成。如:成。如:0001,(100)(010)(001)贵州大学新型光电子材料与技术研究所1.5 晶体的对称性晶体的对称性对称性旋转(n次旋转轴n)反演(对称中心 i)反映(对称面m)旋转反演(n次旋转反演轴 )微观对称要素 平移轴,滑移面,螺旋轴贵州大学新型光电子材料与技术研究所对称性对称性:晶体的外形或物理性质在不同方向上有规律地重复的现象。对称操作:对称操作:使对称图形复原的动作或变换(保持晶体上任意两点间距离不变的变换幺正变换)。对称要素对称要素:施行对称操作

16、时所凭借的几何元素。线对称轴(旋转n)面对称面(镜象m)点对称心(反演i)贵州大学新型光电子材料与技术研究所1.晶体的宏观对称要素:晶体的宏观对称要素:1)旋转)旋转基转角基转角:使对称图形复原转过的最小角度。旋旋转轴轴转轴轴次:次:晶体中只能存在晶体中只能存在1、2、3、4、和、和6次旋转轴。次旋转轴。ABDCE 贵州大学新型光电子材料与技术研究所旋转的投影图表示C4(4)C6(6)C3(3)C1(1)C2(2)C2(2)贵州大学新型光电子材料与技术研究所2)对称面)对称面m(反映或镜象)(反映或镜象)或或 i3)反演)反演i(对称中心)(对称中心)或或 mm贵州大学新型光电子材料与技术研究

17、所4)旋转)旋转反演反演 (复合对称要素)(复合对称要素)或或 i或或 m=3+i=3+m贵州大学新型光电子材料与技术研究所5)旋转)旋转反映反映 (复合对称要素)(复合对称要素)S1或或CS(m)S2或或Ci(i)S3=C3+CSS4S6=C3+Ci贵州大学新型光电子材料与技术研究所描述晶体宏观对称性的独立对称要素只有8个:C1(1)、C2(2)、C3(3)、C4(4)、C6(6)、Ci(i)、CS(m)和和 S4(4)2.晶体的宏观对称类型晶体的宏观对称类型点群点群 晶体中的对称要素可以单独存在,也可以几 个对称要素同时出现(对称要素的组合)。点群:保持晶体中某一点不动的所有对称要 素和对

18、称操作的集合。晶体共有32种不同的 宏观对称类型,称为晶体的32种点群。贵州大学新型光电子材料与技术研究所1)点群的表示)点群的表示Schnflies符号:用符号:用主轴脚标主轴脚标表示表示主轴:主轴:Cn、Dn、Sn、T和和O Cn:n次旋转轴次旋转轴 Dn:n次旋转轴加上次旋转轴加上n个与之垂直的二次轴个与之垂直的二次轴 Sn:n次旋转反映轴次旋转反映轴 T:四面体群四面体群 O:八面体群八面体群脚标:脚标:h、v、d h:垂直于:垂直于n次轴(主轴)的次轴(主轴)的水平水平面为对称面面为对称面 v:含:含n次轴(主轴)在内的次轴(主轴)在内的竖直竖直对称面对称面 d:垂直于主轴的两个二次

19、轴的:垂直于主轴的两个二次轴的平分平分面为对面为对 称面称面贵州大学新型光电子材料与技术研究所国际符号:以特征方向的对称性来表示国际符号:以特征方向的对称性来表示 立方晶系:立方晶系:001 111 110 四方晶系:四方晶系:001 100 110 正交晶系:正交晶系:100 010 001 单斜晶系:单斜晶系:010 三斜晶系:三斜晶系:I 六方晶系六方晶系:001 100 110 三方晶系:三方晶系:001 100贵州大学新型光电子材料与技术研究所晶系晶系对称性特征对称性特征晶胞参数晶胞参数所属点群所属点群Bravais格子格子三斜三斜 只有只有1或或 ia b c C1、CiP单斜单斜

20、2或或 ma b c=90 C2、CS、C2hP、C正交正交三个三个2或或 ma b c=90D2、C2V、D2hP、C、I、F三方三方有且仅有一个有且仅有一个3 或或 3a=b=c=90C3、S6、D3C3V、D3dR四方四方有且仅有一个有且仅有一个4 或或 4a=b c=90C4、S4、C4h、D4C4V、D2d、D4hP、I六方六方有且仅有一个有且仅有一个6 或或 6a=b c=90=120C6、C3h、C6h、D6、C6V、D3h、D6hH立方立方四个四个3(或或3),三个三个4或或4a=b=c=90T、Th、TdO、OhP、I、F贵州大学新型光电子材料与技术研究所晶系晶系对称性特征对

21、称性特征晶胞参数晶胞参数点群(国际符号)点群(国际符号)对称操作数对称操作数三斜三斜 只有只有1或或 ia b c 1,11,2单斜单斜唯一唯一2或或 ma b c=90 2,m,2/m2,2,4正交正交三个三个2或或 ma b c=90222,mm2mmm4,4,8三方三方唯一唯一3 或或 3a=b=c=903,3,32,3m,32/m3,6,6,6,12四方四方唯一唯一4 或或 4a=b c=904,4,4/m,422,42m,4mm,4/mmm4,4,8,8,8,8,16六方六方唯一唯一6 或或 6a=b c=90=1206,6,6/m,622,6mm,6m2,6/mmm6,6,12,1

22、2,12,12,24立方立方四个四个3,3 个个4或或4a=b=c=9023,m3,43m,432,m3m 12.24,24,24,48贵州大学新型光电子材料与技术研究所2)点群的投影图表示)点群的投影图表示晶体对称性的高低由点群所包含的对称要素的种类及晶体对称性的高低由点群所包含的对称要素的种类及对称操作数的多少决定。对称操作数的多少决定。晶体点群的投影图可完全地反映点群的所有对称要素、晶体点群的投影图可完全地反映点群的所有对称要素、对称要素的几何配置及对称操作数的多少。对称要素的几何配置及对称操作数的多少。作投影园;作特征方向的基本对称要素;对称要素间相互作用,给出点群所有对称要素;画等效

23、点系;给出点群对称操作数。贵州大学新型光电子材料与技术研究所例:点群 2m(D2d)的投影图表示 对称要素:1个4,2个2,2个m 对称操作数(=等效 点的数目):8个贵州大学新型光电子材料与技术研究所立方体的对称性立方体的对称性贵州大学新型光电子材料与技术研究所3.晶体的微观对称要素晶体的微观对称要素晶体的微观对称性指晶体内部结构的对称性,是无限结构中的对称性。微观对称要素:微观对称要素:在宏观对称要素的基础上增加平移对称性及平移与旋转、反映构成的复合对称要素。平移轴:平移轴:即沿晶体中基矢方向平移整数个晶格周期。晶体中所有可能的平移之集合构成布拉维格子平移群表示。贵州大学新型光电子材料与技

24、术研究所螺旋轴:螺旋轴:平移与旋转形成的复合对称要素。先绕旋转轴旋转一定角度再沿平行于轴的方向平移滑移面:滑移面:平移与反映形成的复合对称要素。先进行反映再在平行于对称面的平面内沿一定方向平移该方向周期的一半。ABCDABCDE贵州大学新型光电子材料与技术研究所空间群:空间群:晶体内部结构上的对称性称晶体的微观对称性,晶体微观对称类型共有230种,称230种空间群。点空间群点空间群:由一个平移群和一个点群对称操作组合而成,记为(R|tl1l2l3),表示环绕格点进行R操作后再按平移tl1l2l3。复复杂杂空空间间群群:非点空间群。其对称操作仍可记为(R|t),但t不一定是一个平移对称操作,而是

25、复式格子子晶格间的平移操作与平移对称操作之和,如金刚石的对称操作可记为(R|R+tl1l2l3)。到现在为止,已知晶体的结构大都属于到现在为止,已知晶体的结构大都属于230种空间群种空间群中的中的100种,将近有种,将近有80个空间群中一个例子也没有找个空间群中一个例子也没有找到到。贵州大学新型光电子材料与技术研究所 晶体按对称性进行分类1.晶体对称性高低的判别:晶体对称性高低的判别:高次轴的数目,轴次对称操作数的多少2.按对称性分类:按对称性分类:可将晶体分为七大晶系,32种点群,十四种布喇菲格子和230种空间群。贵州大学新型光电子材料与技术研究所此课件下载可自行编辑修改,仅供参考!此课件下载可自行编辑修改,仅供参考!感谢您的支持,我们努力做得更好!谢谢感谢您的支持,我们努力做得更好!谢谢

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁