《人教版小学数学知识总结大全.doc》由会员分享,可在线阅读,更多相关《人教版小学数学知识总结大全.doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、小学数学知识点大全第一部分 数与代数一、概念(一)整数1、整数的意义:自然数和0都是整数。 2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3叫做自然数。 一个物体也没有,用0表示,0也是自然数。 3、计数单位 一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。其中“一”是计数的基本单位. 10个1是10,10个10是100每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。 4、数位 :计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5、整数的读法:从高位到低位,一级一级地读.读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
2、每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。 6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。7、一个较大的多位数,为了读写方便,常常把它改写成用“万或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如:把1254300000 改写成以万做单位的数是125430万;改写成以亿做单位的数 12.543 亿。 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
3、 例如: 1302490015 省略亿后面的尾数是 13 亿. 四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。这种求近似数的方法就叫做四舍五入法。 8、整数大小的比较:位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大.以此类推. (二)小数1、小数的意义 :把整数1平均分成10份、100份、1000份 得到的十分之几、百分之几、千分之几 可以用小数表示。如1/10记作0.1,7/100记作0.07。 一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几一个
4、小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。小数点右边第一位叫十分位,计数单位是十分之一(0。1);第二位叫百分位,计数单位是百分之一(0.01)小数部分最大的计数单位是十分之一,没有最小的计数单位.小数部分有几个数位,就叫做几位小数.如0.36是两位小数,3.066是三位小数.在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一和整数部分的最低单位“一”之间的进率也是10. 2、小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向
5、右顺次读出每一位数位上的数字. 3、小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字.4、比较小数的大小:先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大5、小数的分类 纯小数:整数部分是零的小数,叫做纯小数.例如: 0。25 、 0。368 都是纯小数。 带小数:整数部分不是零的小数,叫做带小数。 例如: 3。25 、 5.26 都是带小数。 有限小数:小数部分的数位是有限的小数,叫做有限小数. 例如: 41.7 、 25。3 、 0.23 都
6、是有限小数。 无限小数:小数部分的数位是无限的小数,叫做无限小数. 例如: 4。33 3.1415926 无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如: 循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 0.0333 12。109109 一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节. 例如: 3。99 的循环节是“ 9 ” , 0.5454 的循环节是“ 54 ”。 纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数. 例如: 3.111 0.5656
7、 混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3。1222 0。03333 写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有一个数字,就只在它的上面点一个点。(三)分数1、分数的意义 :把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。 在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。 把单位“1平均分成若干份,表示其中的一份的数,叫做分数单位。2、分数的读法:读分数时,先读分母再读“分之然后读分子,分子
8、和分母按照整数的读法来读。 3、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。4、比较分数的大小: 分母相同的分数,分子大的那个分数就大. 分子相同的分数,分母小的那个分数就大. 分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小. 如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。 5、分数的分类按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数 真分数:分子比分母小的分数叫做真分数。真分数小于1。 假分数:分子比分母大或者分子和分母相等的分
9、数,叫做假分数。假分数大于或等于1。 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数.6、分数和除法的关系及分数的基本性质 除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。 由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。 分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据.7、约分和通分 分子、分母是互质数的分数,叫做最简分数。 把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分. 约分的方法:用分子和分母的公约数(1除外)去除分子
10、、分母;通常要除到得出最简分数为止. 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分. 通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数.8、倒 数 乘积是1的两个数互为倒数。 求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。 1的倒数是1,0没有倒数(四)百分数1、百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用”来表示。百分号是表示百分数的符号。 2、百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。3、百分数的写法:百分数通常不写成分数形式,而在原
11、来的分子后面加上百分号“来表示。4、百分数与折数、成数的互化: 例如:三折就是30,七五折就是75,成数就是十分之几,如一成就是牐 闯砂俜质 褪?0,则六成五就是65%。5、纳税和利息: 税率:应纳税额与各种收入的比率. 利率:利息与本金的百分率.由银行规定按年或按月计算。 利息的计算公式:利息=本金利率时间6、百分数与分数的区别: 意义不同。百分数是“表示一个数是另一个数的百分之几的数.它只能表示两数之间的倍数关系,不能表示某一具体数量.因此,百分数后面不能带单位名称。分数是“把单位1平均分成若干份,表示这样一份或几份的数。分数不仅可以表示两数之间的倍数关系,还可以表示一定的数量. 书写形式
12、不同。百分数通常不写成分数形式,而采用百分号“”来表示。如:百分之四十五,写作:45%;分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。7、数的互化 小数化成分数:有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。 分数化成小数:用分母去除分子。能除尽的就化成有限小数,除不尽的,按要求取近似数。小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。 分数化成百分数:通常先把分数化成小数(除
13、不尽时,通常保留三位小数),再把小数化成百分数。 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。 (五)数的整除 1、整除的意义整数a除以整数b(b 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。2、因数和倍数 如果数a能被数b(b 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。 一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。3、奇数和偶数 自然数按能否被2 整除的特征可分为奇数和偶数。 能被2整除的数叫做偶数.0也是偶数。 不能被2整
14、除的数叫做奇数。 奇数和偶数的运算性质: 相邻两个自然数之和是奇数,之积是偶数. 奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数奇数=偶数,奇数偶数=奇数,偶数奇数=奇数,偶数-偶数=偶数;奇数奇数=奇数,奇数偶数=偶数,偶数偶数=偶数. 4、整除的特征 个位上是0、2、4、6、8的数,都能被2整除。 个位上是0或5的数,都能被5整除。 一个数的各位上的数的和能被3整除,这个数就能被3整除。 一个数各位数上的和能被9整除,这个数就能被9整除。 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除.5、质数和合数 一个数,如果只有1和它本身两个因数,这样的数叫做质数。10
15、0以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。 一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。 1既不是质数也不是合数,如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。 6、分解质因数 质因数每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=35,3和5 叫做15的质因数。 分解质因数把一个合数用质因数相乘的形式表示出来,叫做分解质因数。通常用短除法来分解质因数.先用能整除
16、这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。公因数几个数公有的因数叫做这几个数的公因数。其中最大的一个叫这几个数的最大公因数。公因数只有1的两个数,叫做互质数。成互质关系的两个数,有下列几种情况:和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公因数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。如果两个数是互质数,它们的最大公因数就是1。 公倍数:几个数公有的倍数叫做这几个数的公倍数。其中最大的一个叫这几个数的最大公倍数。最小的
17、一个,叫做这几个数的最小公倍数。如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数.如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。 几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。二、性质和规律(一)商不变的规律 :在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。 (二)小数的性质 :小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。 (三)小数点位置的移动引起小数大小的变化规律:1、小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍2、小数点向左移动一位,原来
18、的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍3、小数点向左移或者向右移位数不够时,要用“0补足位. (四)分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变. 三、运算法则(一)整数四则运算的法则1、加法:把两个数合并成一个数的运算叫做加法。 加数+加数=和 一个加数=和另一个加数 2数减法:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。加法和减法互为逆运算. 被减数减数=差 被减数-差 =减数 差+减数=被减数3、乘法:求几个相同加数的和的简便运算叫做乘法。一个因数 一个因数 =积 一
19、个因数=积另一个因数 在乘法里,0和任何数相乘都得0, 1和任何数相乘都的任何数。 4、除法:已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。 在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商. 乘法和除法互为逆运算。 在除法里,0不能做除数. 被除数除数=商 除数=被除数商 被除数=商除数 (二)运算定律 1、加法运算定律 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。2、乘法运算定律
20、 乘法交换律:两个数相乘,交换因数的位置它们的积不变,即ab=ba。 乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(ab)c=a(bc) .乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘,再把两个积相加。即(a+b)c=ac+bc 。 乘法分配律扩展:两个数的差与一数相乘,可以先把它们与这个数分别相乘,再相减。即(a-b)c=ac-bc3、减法运算定律 从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-bc=a-(b+c) . 一个数连续减去两个数,可以先减去第二个减数,再减去第一个
21、减数,即ab-c=acb.4、除法运算定律 一个数连续除以两个数,可以除以这两个数的集,即abc=a(bc)。 一个数连续除以两个数,可以先除以第二除数,再除以第一个除数,即abc=acb。5、其它ab+c=a+cb;a-b+c=a+(bc);abc=acb;abc=a(bc).6、积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。 推广:一个因数扩大A倍,另一个因数扩大B倍,积扩大AB倍。 一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍.7、商不变性质: 在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变。ab=(am) (bm)
22、=(am) (bm) m0 推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍。 被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍。利用积的变化规律和商不变规律性质可以使一些计算简便。但在有余数的除法中要注意余数。如:8500200= 可以把被除数、除数同时缩小100倍来除,即852= ,商不变,但此时的余数1是被缩小100被后的,所以还原成原来的余数应该是100。 (五)计算方法 1、整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。 2、整数减法计算法则:相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上
23、的数合并在一起,再减。 3、整数乘法计算法则:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。 4、整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面.如果哪一位上不够商1,要补“0”占位.每次除得的余数要小于除数。 5、小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0补足。 6、除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小
24、数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除. 7、除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。 8、同分母分数加减法计算方法:同分母分数相加减,只把分子相加减,分母不变。 9、异分母分数加减法计算方法:先通分,然后按照同分母分数加减法的的法则进行计算。 10、带分数加减法的计算方法:整数部分和分数部分分别相加减,再把所得的数合并起来。 11、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分
25、子,分母相乘的积作分母。 12、分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。(六) 运算顺序 1、整数、小数、分数四则运算的运算顺序和整数四则运算顺序相同. 2、没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法,后算加、减法。 3、有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的。 四、解决问题(一)整数和小数的应用1、简单应用题 (1)简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。 2、复合应用题 有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。 (1
26、) 解答加法应用题: a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少. b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。 (2) 解答减法应用题: a求剩余的应用题:从已知数中去掉一部分,求剩下的部分. b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。 c求比一个数少几的数的应用题:已知甲数是多少,,乙数比甲数少多少,求乙数是多少。 (3) 解答乘法应用题: a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。 b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数
27、是多少。 (4) 解答除法应用题: a把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少. b求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份. C 求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。 d已知一个数的几倍是多少,求这个数的应用题. 3、典型应用题 具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。 (1)归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。 解题关键:从已知的一组对应量中用等分
28、除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果.数量关系式:单一量份数=总数量(正归一) 总数量单一量=份数(反归一) 例 一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米,需要多少天? 分析:必须先求出平均每天织布多少米,就是单一量. 693 0 ( 477 4 31 ) =45 (天)(2)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量). 数量关系式:单位数量单位个数另一个单位数量 = 另一个单位数量 单位数量单位个数另一个单位数量= 另一个单位数量。 例:
29、修一条水渠,原计划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米? 分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。 80 0 6 4=1200 (米) (3)和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。 解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。 解题规律:(和差)2 = 大数 大数差=小数 (和差)2=小数 和小数= 大数 例 某加工厂甲班和乙班共有工人 94 人,因工作
30、需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人? 分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 12 ,由此得到现在的乙班是( 9 4 12 ) 2=41 (人),乙班在调出 46 人之前应该为 41+46=87 (人),甲班为 9 4 87=7 (人) (4)和倍问题:已知两个数的和及它们之间的倍数关系,求两个数各是多少的应用题,叫做和倍问题. 解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数.求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)
31、与标准数的倍数关系,再去求另一个数(或几个数)的数量。 解题规律:和倍数和=标准数 标准数倍数=另一个数 例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆? 分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆 . 列式为( 1157 )( 5+1 ) =18 (辆), 18 5+7=97 (辆) (5)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。 解题规律:两个数的差(倍数1 )= 标准数 标准数倍数=另一个数。 例
32、甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米? 分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。列式( 63-29 )( 3-1 ) =17 (米)乙绳剩下的长度, 17 3=51 (米)甲绳剩下的长度, 29-17=12 (米)剪去的长度。(6)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、速度和、速度差等概念,了解他们之间的关系,
33、再根据这类问题的规律解答。 解题关键及规律: 同时同地相背而行:路程=速度和时间. 同时相向而行:相遇时间=速度和时间 同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。同时同地同向而行(速度慢的在后,快的在前):路程=速度差时间。例 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米,甲几小时追上乙? 分析:甲每小时比乙多行( 169 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。 已知甲在乙的后面 28 千米 (追击路程), 28 千米 里包含着几个( 16-9 )千米,也就是追击所需要的时间。列式 2 8 ( 16
34、-9 ) =4 (小时)(7)鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡和“兔各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题 解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。 解题规律:(总腿数鸡腿数总头数)一只鸡兔腿数的差=兔子只数 兔子只数=(总腿数2总头数)2如果假设全是兔子,可以有下面的式子: 鸡的只数=(4总头数总腿数)2兔的头数=总头数鸡的只数 例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只? 兔子只数 ( 170-2 50 ) 2 =35 (只) 鸡的只数 50-35=15
35、(只) (二)分数和百分数的应用 1、分数加减法应用题: 分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。 2、分数乘法应用题: 是指已知一个数,求它的几分之几是多少的应用题. 特征:已知单位“1”的量和分率,求与分率所对应的实际数量. 解题关键:准确判断单位“1”的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。 3、分数除法应用题: 求一个数是另一个数的几分之几(或百分之几)是多少. 特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数是比较量,“另一个数”是标准量.求分率或百分率,
36、也就是求他们的倍数关系。 解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数. 甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。 甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数。已知一个数的几分之几(或百分之几 ) ,求这个数。 特征:已知一个实际数量和它相对应的分率,求单位“1”的量. 解题关键:准确判断单位“1的量把单位“1的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际 数量。 4、常
37、用的百分率发芽率=发芽种子数/试验种子数100 出油率=小麦的出粉率= 面粉的重量/小麦的重量100% 及格率= 产品的合格率=合格的产品数/产品总数100 达标率= 职工的出勤率=实际出勤人数/应出勤人数100% 优生率=命中率= 糖水浓度=5、工程问题: 是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。 解题关键:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。 数量关系式: 工作总量=工作效率工作时间 工作效率=工作总量工作时间 工作时间=工作总量工作效率 工作总量工作
38、效率和=合作时间 6、纳税 纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。 缴纳的税款叫应纳税款。 应纳税额与各种收入的(销售额、营业额、应纳税所得额 )的比率叫做税率。 7、利息 存入银行的钱叫做要本金. 取款时银行多支付的钱叫做利息。 利息与本金的比值叫做利率。 利息=本金利率时间 五、常用的数量关系式1、每份数份数总数 总数每份数份数 总数份数每份数2、1倍数倍数几倍数 几倍数1倍数倍数 几倍数倍数1倍数3、速度时间路程 路程速度时间 路程时间速度4、单价数量总价 总价单价数量 总价数量单价5、工作效率工作时间工作总量工作总量工作效率工作时间工作
39、总量工作时间工作效率 6、加数加数和 和一个加数另一个加数7、被减数减数差 被减数差减数 差减数被减数8、因数因数积积一个因数另一个因数9、被除数除数商 被除数商除数 商除数被除数10、路程=速度时间 总价=单价数量工作总量=工作效率工作时间 速度=路程时间 单价=总价数量 工作效率=工作总量工作时间 时间=路程速度 数量=总价单价 工作时间=工作总量工作效率几倍量=1倍量倍数总产量=单产量面积数 总数=平均数总份数1倍量=几倍量倍数 单产量=总产量面积数 平均数=总数总份数倍数=几倍量1倍量 面积数=总产量单产量 总份数=总数平均数总量=用去的量+剩下的量 比较量=单位“1”的量比较量的对应
40、分率用去的量=总量剩下的量 单位“1”的量=比较量比较量的对应分率剩下的量=总量用去的量 比较量的对应分率= 比较量单位“1的量11、图上距离:实际距离=比例尺 图上距离比例尺=实际距离 实际距离比例尺=图上距离 13、利息利息本金利率时间第二部分 式与方程一、用字母表示数1、用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式 常见的数量关系 路程用s表示,速度v用表示,时间用t表示,三者之间的关系: s=vt v=st t=sv 总价用a表示,单价用b表示,数量用c表示,三者之间的关系:a=bc b=ac c=ab 运算定律和性质 加法交换律:a+b=b+a加法结合律:(a+b)+
41、c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc) 乘法分配律:(a+b)c=ac+bc减法的性质:a-(b+c) =abc2、用字母表示数的写法 数字和字母、字母和字母相乘时,乘号可以记作“.”,或者省略不写;数与数相乘,乘号不能省略。当“1”与任何字母相乘时,“1”省略不写.数字和字母相乘时,将数字写在字母前面。 在一个问题中,同一个字母表示同一个量,不同的量用不同的字母表示. 二、简易方程 1、等式:表示相等关系的式子叫等式。2、方程:含有未知数的等式叫做方程。 判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式。所以,方程一定是等式,但等式不一定是方
42、程. 3、方程的解:使方程左右两边相等的未知数的值,叫做方程的解。 4、解方程 :求方程的解的过程叫做解方程。四、比和比例 1、比的意义和性质 比的意义:两个数相除又叫做两个数的比。 “:”是比号,读作“比。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。 同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商. 比值通常用分数表示,也可以用小数表示,有时也可能是整数。 比的后项不能是零。 根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。 比的性质 比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做
43、比的基本性质。 求比值和化简比 求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。 根据比的基本性质可以把比化成最简单的整数比.它的结果必须是一个最简比,即前、后项是互质的数. 比例尺 图上距离:实际距离=比例尺 要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。 线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。 按比分配 在工业生产和日常生活中,常常要把一个数量按照一定的比来进行分配,这种分配方法通常叫“按比分配. 按比分配的有关习题,在解答时,要善于找准分配的总量和分配的比,然后把分配的比转化成分数
44、或份数来进行解答.方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少. 2、比例的意义和性质 比例的意义 :表示两个比相等的式子叫做比例。 组成比例的四个数,叫做比例的项。 两端的两项叫做外项,中间的两项叫做内项。 比例的性质 在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。 解比例 根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。 3、正比例和反比例 成正比例的量 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系. 用字母表示y/x=k(一定) 成反比例的量 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系. 用字母表示xy=k(一定)4、比例应用题 正、反比例应用题的解题策略: 审题,找出题中相关联的两个量 分析,判断题中相关联的两个量是成正比例关系还是成反比例关系。 设未知数,列比例式 解比例式 检验,写答语第三部分 度量一、概述1、事物的多少、长短、大小、轻重、快慢等,这些可以测定的客观事物的特