《2023年模糊规划中模糊量的几种处理方法_视频模糊变清晰处理方法.docx》由会员分享,可在线阅读,更多相关《2023年模糊规划中模糊量的几种处理方法_视频模糊变清晰处理方法.docx(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年模糊规划中模糊量的几种处理方法_视频模糊变清晰处理方法 第27卷第4期 湖北师范学院学报(自然科学版) Journal of Hubei Nor mal University (Natural Science ) Vol 127No 14, 2023 模糊规划中模糊量的几种处理方法 刘云芬 (湖北师范学院数学系, 湖北黄石435002) 摘要:随着模糊环境下的规划问题在日常生活中的广泛应用, 模糊规划问题显得日趋重要。对处理模糊规划问题中模糊量的现有的方法作了一个总结和分类, 最终对这些处理方法作了一个简洁的比较分析。关键词:模糊量; 模糊规划; 模糊测度 中图分类号:O159文献标
2、识码:A 文章编号:100922714(2023) 0420232203 。如何简洁键问题, , , 对于其中模糊1经典规划模型的一般形式 1 为: max f (x ) s . t . g j (x ) 0, j =1, 2, , p (1) 在经典规划问题中, 目标函数和约束函数均是确定的, 但是在实际问题中有许多状况, 人们采集到的数据并不都是清楚的。模糊现象在日常生活中比较常见, 假如目标函数或约束集合中含有模糊数据, 我们有必要在经典规划模型中引入模糊量, 于是得到下面的模糊规划模型的一般形式: ) max f (x, (2) ) 0, j =1, 2, , p s . t . g
3、j (x, 其中为模糊量, x 为多维实变量。 2模糊规划模型中模糊量的几种处理方法 在模糊规划模型(2) 中, 由于目标函数和约束集合中模糊量的存在, 我们不行能用处理经典规划问题的方法来求解, 必需首先对其中的模糊量作一个处理, 下面将给出几种处理模糊量的方法。2. 1序函数法 借用一个排序函数, 将模糊量映射到一个全序集(通常取实数集) , 干脆利用模糊量在全序集中的像来代替模型中的模糊量。详细的转化方法描述为: ) =x 设F 为论域上的全部模糊集, X 为全序集, I:F X , I (, F, x X, 则模型(2) 转化为: 收稿日期:20231022 作者简介:刘云芬(1979
4、) 女, 湖北鄂州人, 硕士, 助教, 探讨方向为智能计算与不确定信息处理1 ) max f x, I ( s . t g j x, I () 0, j =1, 2, , p (3) 即是下面的模型: ) max f (x, x s . t ) 0, j =1, 2, , p g j (x, x (4) 其中x 为实变量, x 为在全序集中的像, 为一个确定的量。 这样模糊规划模型(2) 就转化为经典规划模型(3) 或(4) , 变成了经典的线性规划, 可以用求解线性规划的经典方法来求解。2. 2序关系法 在模糊量的排序中, 有时不是干脆给出一个排序函数, 而是将模糊量的大小关系等价于一个全序
5、集(通常是实数集) 上的大小关系, 利用全序集上量的大小关系来转化模型。下面以模糊环境下的线性规划为例说明。 模糊环境下的线性规划的一般模型结构为: max z =c 1x 1+c 2x 2+n n s . t . a i 1x 1+a 2n i i 1, , , m j j =1, 2, , (5) 其中a ij , , j , 假定模型(5) 中的模糊数均为L -R 模糊数, 对于L -R 型模糊数, 文献给出了其排序准则 2 ) , M N m n, r , :M=(m , , ) N =(n, r , 1于是模型(5) 可以转化为: max z =c j x j j =1 n s .
6、t . a ij x j b i , i =1, 2, , m j =1 n a ij x j b i , i =1, 2, , m j =1n n (6) j =1 a ij x j b i , i =1, 2, m x j 0, j =1, 2, , n 这样模糊环境下的线性规划模型就转化为经典线性规划模型了。2. 3Verdegay 提出的截集法 若模糊规划问题中的模糊约束为一模糊集合, 较常用的一种方法是考虑模糊约束集合截集上的最优解; 进而对不同的截集综合考虑, 得到原问题的最优集合, 下面将作一个介绍: 是模糊解空间的-截集, 在具有模糊约束的线性规划问题中, 设:C =x |x
7、X, C (x ) ) 是目标函数f (x ) 在C 上的最优集, M =M , 则线性规划的最优M =x |x C , f (x ) =max f (x x C 3 1 =0 决策集D 定义为:D =M , 其隶属函数为:(x ) 0, 1 D x M sup x M 0other wise 1 这样得到的模糊集合D =(x, M 即为原问题的模糊优越集, x 的最终确定只能靠主D (x ) ) |x 观推断, 且最终的决策也取决于决策者敢冒多大的风险。2. 4模糊测度法 为了度量模糊量, M. Sugeno 于1974年提出Fuzzy 测度的概念, 此后将模糊测度用于模糊规划问 题的两种模
8、糊测度是1978年提出的可能性测度和清华刘宝碇教授2023年提出的可信性测56度。运用模糊测度处理模糊规划问题是将模糊规划中的模糊目标或是模糊约束整体看成一模糊量, 进而考虑其Fuzzy 测度。下面先给出几个定义, 然后给出以可信性测度为基础处理模糊规划的三种模型结构。定义1设X 为论域, A 为论域上的模糊集合, 则A 的置信性测度为: (x ) +1-sup (x ) Cr Asup x A c 2x A 定义2设为一个模糊变量, 则的期望值为:E =1) 期望值模型 58 4 C rrd r -C rrd r - +0 这是一种考虑模糊目标和模糊约束的数学期望, 从而得到期望值模型, 其
9、一般形式如下: max E f (x, ) s . t . E g j (x, ) 0 (7) 其中x 为决策向量, 为模糊变量, f (x, ) 为目标函数, g j (x, ) 为约束条件, E 。 2) 机会约束规划模型 , 约束条件, : x i ) s . ) f C rf (x, ) 0, j =1, 2, , pC rg j (x, (8) 其中, , 是给定的可信性水平, 为模糊变量, max f 表示目标的-乐观值, C r 为置信性测度。max m in f x f ii ) 极大化悲观的约束规划模型 s . t . C rf (x, ) f C rg j (x, ) 0,
10、 j =1, 2, , p (9) 其中m in f 是目标函数的-悲观值。 3) 相关机会约束规划模型 这种模型也是考虑目标函数或是约束函数的可信性测度, 是针对困难的决策系统而提出的, 一个困难的决策系统通常要完成多项任务, 称为事务。相关机会规划是使这些事务实现的机会尽可能大。其一般的模型形式为: max C rh k (x, ) 0, k =1, 2, , q s . t . g j (x, ) 0, j =1, 2, , p (10) 其中x 为决策向量, 为模糊变量。 前面介绍的一些处理模糊规划中模糊量的方法, 以各种各样的模糊背景出现在不同的文献中。在运用序函数法处理时, 选用不
11、同的序函数便得到不同的解集; 在处理时一般要结合规划问题的实际背景和序函数的确定背景来考虑。序关系在处理特别模糊系数规划中比较常见, 比如三角模糊系数规划, 区间规划等。截集方法是将模糊环境下的最优集看成一模糊集合。模糊测度法的思想是建立 910 一套类似于概率测度的理论来处理模糊量, 这种方法已经在很多领域得到了广泛的应用。 (下转第118页) 完善的措施。参考文献: 1杨仲发. 课改进程中的初中学化学连接教学J .化学教化, 2023, (7) :394512丁文楚. 中学生学习化学调查J .化学教化, 2000, (5) :202213夏正春. 高一学生化学学习困难探析J .化学教化,
12、2023, (6) :333514化学课程标准研制组. 化学课程标准解读M.武汉:湖北教化出版社, 202315教化部. 化学教学大纲M.北京:人民教化出版社, 20231 Connecting of chem ical teaching of m iddle school in chem ical course i n novati on XU Xiao 2hui (The Second M iddle School of Huangshi, Huangshi 435003, China ) Abstract:The contradicti on existed in che m ical
13、teaching of m iddle school with the devel opment of che m curricula innova 2ti on was discussed . The measure ments of paying attenti on t o the che m ical connecting of school and seni or high school in teaching ai m s, teaching contents, teaching methods, well as f ostering hom inine diathesis of
14、students were putted f or ward . Key words:curricula innovati on ; che m ical teaching; (上接第104页) 1袁亚湘, . 最优化理论与方法M.北京:科学出版社, 1997. 2张曾科. 模糊数学在自动化技术中的应用M.北京:清华高校出版社, 1997. 3胡宝清. 模糊理论基础M.武汉:武汉高校出版社, 2023. 4 Zadeh L A. Fuzzy sets as a basis f or a theory of possibilityJ .Fuzzy Sets and Syste m s, 1978
15、, (1) :328. te m s, 2023, 10(4) :4454501 6L iu B. Uncertainty Theory:An intr oducti on t o its axi omatic f oundati onsM1Berlin:Sp ringer -Verlag, 2023. 7L iu B. Foundati on of uncertainty theoryE B /OL.htt p:/orsc. edu . cn /liu, 20231103. 8L iu B. Fuzzy p r ogra mm ingE B /OL.htt p:/orsc. edu . cn
16、 /liu, 20230810. 9刘宝碇, 赵瑞清, 王纲. 不确定规划及应用M.北京:清华高校出版社, 2023. 10刘宝碇, 赵瑞清. 随机规划与模糊规划M.北京:清华高校出版社, 1998. 5L iu B, L iu Y K . Expected value of fuzzy variable and fuzzy expected value modelsJ .I EEE Transacti ons on fuzzy sys 2 Several soluti ons to the fuzzy dat a in fuzzy programm ing L IU Yun 2fen (De
17、part m ent ofMathe matics, Hubei Nor mal University, Huangshi 435002, China ) Abstract:W ith the app licati on of p r ogra mm ing in fuzzy envir on ments at many fields, the fuzzy p r ogramm ing p r oble m s become more and more i m portant . we mainly afford a su mmary and a classificati on of the several s oluti ons t o dealwith the fuzzy data in the fuzzy p r ogra mm ing models, finally make a si m p le comparis on t o these methods . Key words:fuzzy data; fuzzy p r ogramm ing; fuzzy measure