《2023年大数据 表态发言(精选多篇).docx》由会员分享,可在线阅读,更多相关《2023年大数据 表态发言(精选多篇).docx(129页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年大数据 表态发言(精选多篇) 推荐第1篇:大数据 猴场乡大数据工作开展情况汇报 猴场乡是全省100个一类贫困乡镇之一,贫困面大,贫困发生率高,扶贫工作任务艰巨。为更好的实施精准扶贫,帮助全乡群众早日脱贫致富,与全县实现同步小康,今年与来,在上级各部门的帮助和指导下,猴场乡的大数据工作有续开展,取得了一定实效,现将工作情况汇报如下: 一、进村入户、摸清底数 弄清群众真实状况,弄清群众所需所盼,是实施精准扶贫的基础。“欲知民事,必入民屋”。了解民情,按照上级政府部门的要求,在各级领导部门的帮助下,我乡充分发挥驻村干部、包村干部及村干部的基础性作用,在乡联系领导的带领下,按照不漏一户,不漏
2、一人的工作要求,在各村开展民情调查,并将调查内容制成电子档案。即将每个自然村按村民组进行分组,把村干部和驻村、包村干部进行分组,一名村干部和一名驻村干部或包村干部为一组,分组对各村民组进行入户调查。调查内容包括家庭人口、家庭收入、主要经济来源、是否贫困户、贫困户致贫原因,非贫困户能否带动发展、群众发展意愿等60余个项目。通过调查,建立了瞄准机制,摸清了全乡群众的真实情况,实现了 “一家一户调研摸底、一家一户一本台账”。全乡共调查7357户26066人。其中贫困户4182户12158人,贫困户中低保户1700户4592人,需要政策兜底的288户475人;非贫困户3175户13908人,其中能自己
3、致富的?户多人,到带富的?户?人;一般户?户?人;离任村干部108人,党员272人,退伍军人137人;初中以上非在校群众9321人,其中高中414人,大专及以上192人;在校初中及以上2023人,其中初中1548人,高中350人,中专64人,大专以上39人。 二、能人带动,产业致富,有效帮助群众致富 通过对大数据的科学分析论证,综合分析各类群众的具体情况,我乡制定了初步的帮扶方案。总体上以种养殖业为主导,通过对能人带富的帮扶,帮助发展产业,培育大户,进而利用大户带小户,小户带散户的模式,逐步实现总体致富的目标。 (一)特殊人群,特殊处理 第一是需要政策兜底的群众。这部分群众多为丧失劳动力的高龄
4、老人和残疾群众,是社会的弱视群体,无力通过自身的发展来实现脱贫致富。针对这类人群,充分利用低保、新农合、乡养老院等,保证这类群众有所养,有所依,有所乐; 第二是对有孩子正在接受教育的家庭,通过教育扶贫方式帮扶。知识是第一生产力,教育改变命运。一个家庭,如果能出一个大学生,就给这个家庭注入了发展的活力,家庭的情况也将发生质的变化。我乡以“改善山区教育条件、推动教育事业均衡发展、培育新型农村实用人才”为扶持重点,努力实现教育均衡化。从孩子教育上下功夫,加大教育投入力度。目前,已建成猴场中学、猴场中心校和西北小学寄宿制学校,解决学生长途跋涉之苦;在西北小学、乡中心校、谷毛小学、中学建设教师周转房;在
5、中心校和中学建设少年宫,是全县唯一一个同时建设两所乡村少年宫的乡镇;实现了中心幼儿园和谷毛幼儿园的公助民办;充分利用“金秋助学”、“雨露计划”等,全面覆盖,开展智力帮扶,帮助他们顺利完成学业,自2023年以来,实现辖区内二本以上大学生扶持资助全覆盖。 第三是留守儿童,一是建立留守儿童爱心之家,做好“四个一”管理,即:“一份成长档案、一张爱心联系卡、一个心理咨询台、一套规章制度。”二是开展专题心理讲座。在各中小学校开设心理辅导课,针对留守儿童“关爱缺失”引起严重的“情感饥饿”及情感缺失形成的心理障碍开展巡回专题辅导,孩子在心理老师的引导下,情感得到丰富,性格也由内向向开朗转变。三是开展“凤还巢”
6、帮扶活动。对全乡外出务工人员及返乡农民工,摸清底数,摸清特长、摸清创业意向,确保全覆盖。由乡党委政府牵头、信用社组织力量对这部分人群进行评估,主动联系,发放贷款,助力创业,让更多的外出务工人员愿意、主动返乡创业,使留守儿童数量不断降低。四是开展结对帮扶留守儿童。有针对性安排乡直机关干部职工、学校教师对留守儿童进行“1+1”结对帮扶。帮扶过程实行动态管理、动态上报、动态帮扶。五是开展联系留守儿童家长活动。联系留守儿童家长,请家长做到“五个一”,即:每周与孩子通电话一次、每月与孩子的班主任联系一次、每月与孩子的临时监护人联系一次、争取每半年与孩子见一次面、每学期到学校与老师当面交谈一次。 (二)普
7、通人群,致富引导 第一、配强村级一把手。在选拔各村支部书记时,坚持“选能人、用好人,为民选好领头人”的原则,拓宽选拔层面,面向社会大户能人、乡土人才、产业协会党组织负责人、大中专毕业生、复转军人等群体,选贤任能,把政治素质强、带领群众致富能力强的“双强”型人才,依法选拔进村两委班子,增强村级组织整体功能,建设一批村干部精英群体,为群众致富树立导向。引导村级“一把手”用党的理论武装头脑、指导实践、推动工作。通过“三严三实”教育活动、上党课等方式对各村支部书记进行培训充电,进一步提高他们运用科学理论分析和解决实际问题的能力,为全村的经济发展想思路、谋发展,并把国家的相关政策法规宣传到户,为人民群众
8、排忧解难。 第二、打造致富“集团军”。一方面各村结合实际,因地制宜,按照“大户带小户,小户带散户”的工作思路,建立种植、养殖群体,形成了一点成线、以线覆面的“集团化”产业发展格局。另一方面坚持“一村一特、一村一品”,重点打造山地高效农业小区,扶持大户种植核桃,小红蒜,林下养殖本地土鸡,养兔、养牛等。组织全乡群众跟进大户步伐,以家庭为单位,在大户核心区的带动下,大力发展种养殖业。 第三、引进科技“领头雁”。扎实开展“支部带富、党员致富、能人带富”三带工程,将返乡农民工自助创业工程纳入扶贫工作范围,把贫困户作为重点帮扶对象,扶持一批有技术、有本事的科技示范户,并利用他们的影响力,加大宣传力度,让群
9、众知晓科学技术在农业产业发展中的重要性,让群众改变传统观念,学到新的生产生活技能。另一方面,扩大资金支持。积极推动三个“十五万”、妇女小额贷款、院坝经济等项目支持自主创业的大户能人,通过先扶持一批能人创业致富人的方式,带动群众创业发家。 第四、坚持“递进式重实效”扶贫模式,走“生态产业化、产业生态化”道路。我乡在省总工会及各级各部门的支持和帮助下,形成了四种精准扶贫开发经验,“自购补贴、分级分时补贴、1:1资金滚动补贴、小额贷款”等四种扶贫模式。下步工作中,将继续以“生态产业化,产业生态化”为总要求,重点发展种植业和畜牧业,以扩大、提高传统种植特色产品的规模及品质为目标,着力培育绿色生态特色产
10、品,在2023年前全乡逐步建成“一核心四片区”现代特色生态农业产业发展格局,即:即以水落洞村为核心,建成以优质水稻、生态畜牧业、精品水果产业为主体的现代特色生态农业和休闲农业示范核心区,形成猴场、西北、谷毛片区以核桃、马铃薯、中药材为主的产业带;猛舟片区以时令水果、蔬菜和粮食增产工程为主的产业带。通过产业的发展,带领群众脱贫致富。 第五是培育一批地方知名品牌。通过品牌效应,增加家产品的销路和收益,壮大经济实力,引导群众致富。积极推动产品商标注册、绿色产品认定及地理标识注册工作,加大特色农产品及其制品的宣传推介和市场开拓力度,大力宣传猴场生态产业品牌,树立品牌意识,努力打造品牌产品,使种养殖户和
11、企业获得最大的经济效益。把生态做成产业,把产业做成生态,依靠品牌不断提升猴场乡特色农产品的市场知名度,推动特色产业的发展壮大。创建产地品牌,打造仙马牌系列生态产品,利用知识产权保护,将资源优势转化为市场优势,将资源转化为资产,增加产品的市场占有率和竞争力。一是找准优势主导产业。要想富,产业发展是出路。结合我乡生态良好的特点,重点打造以下产业。核桃种植:猴场的气候非常适合核桃生长,群众历来都有种植核桃的传统,因此,我们在全乡范围内广种核桃。 总的来说,通过大数据,将特殊人群、能致富人群、能带动致富人群等有效的区别开来,通过对特殊人群进行特殊帮扶,配强村级一把手、找准致富带头人,找准产业致富路,从
12、而达到精准扶贫的效果。 推荐第2篇:大数据 大数据时代带来的大变革 中国社会科学评价中心 荆林波 中国青年报 ( 2023年05月26日 02 版) 大数据时代的来临,带给我们众多的冲击,每个人都应当与时俱进、不断提升,放弃残缺的守旧思想,大胆接受新的挑战。 探讨大数据时代将给我们带来哪些变革,首先要搞清楚什么是大数据,其次,要厘清大数据会带来哪些变革,最后,要思考如何应对大数据时代的挑战。 什么是大数据? 国际数据公司定义了大数据的四大特征:海量的数据规模(vast)、快速的数据流转和动态的数据体系(velocity)、多样的数据类型(variety)和巨大的数据价值(value)。仅从海量
13、的数据规模来看,全球IP流量达到1EB所需的时间,在2023年需要1年,在2023年仅需1天,到2023年则仅需半天。全球新产生的数据年增40%,全球信息总量每两年就可翻番。 而根据2023年互联网络数据中心发布的数字宇宙2023报告,2023年全球数据总量已达到1.87ZB(1ZB=10万亿亿字节),如果把这些数据刻成DVD,排起来的长度相当于从地球到月亮之间一个来回的距离,并且数据以每两年翻一番的速度飞快增长。预计到2023年,全球数据总量将达到3540ZB,10年间将增长20倍以上。 需要强调的是:所谓大数据并不仅仅是指海量数据,而更多的是指这些数据都是非结构化的、残缺的、无法用传统的方
14、法进行处理的数据。也正是因为应用了大数据技术,美国谷歌公司才能比政府的公共卫生部门早两周时间预告2023 年甲型H1N1流感的暴发。 厘清大数据带来了哪些变革 就像电力技术的应用不仅仅是发电、输电那么简单,而是引发了整个生产模式的变革一样,基于互联网技术而发展起来的“大数据”应用,将会对人们的生产过程和商品交换过程产生颠覆性影响,数据的挖掘和分析只是整个变革过程中的一个技术手段,而远非变革的全部。“大数据”的本质是基于互联网基础上的信息化应用,其真正的“魔力”在于信息化与工业化的融合,使工业制造的生产效率得到大规模提升。 简而言之,“大数据”并不能生产出新的物质产品,也不能创造出新的市场需求,
15、但能够让生产力大幅提升。正如,大数据时代:生活、工作与思维的大变革作者肯尼思库克耶和维克托迈尔-舍恩伯格指出:数据的方式出现了3个变化:第一,人们处理的数据从样本数据变成全部数据;第二,由于是全样本数据,人们不得不接受数据的混杂性,而放弃对精确性的追求;第三,人类通过对大数据的处理,放弃对因果关系的渴求,转而关注相互联系。这一切代表着人类告别总是试图了解世界运转方式背后深层原因的态度,而走向仅仅需要弄清现象之间的联系以及利用这些信息来解决问题。 如何应对大数据带来的挑战 第一, 大数据将成为各类机构和组织,乃至国家层面重要的战略资源。 在未来一段时间内,大数据将成为提升机构和公司竞争力的有力武
16、器。从某一层面来讲,企业与企业的竞争已经演变为数据的竞争,工业时代引以自豪的厂房与流水线,变成信息时代的服务器。阿里巴巴集团的服务器多达上万台,而谷歌的服务器超过了50万台。重视数据资源的搜集、挖掘、分享与利用,成为当务之急。 第二,大数据的公开与分享成为大势所趋,政府部门必须身先士卒。 2023年6月在英国北爱尔兰召开G8会议,签署了开放数据宪章,要求各国政府对数据分类,并且公开14类核心数据,包括:公司、犯罪与司法、地球观测、教育、能源与环境、财政与合同、地理空间、全球发展、治理问责与民主、保健、科学与研究、统计、社会流动性与福利和交通运输与基础设施。同年7月,我国国务院就要求推进9个重点
17、领域信息公开工作。正如李克强总理所强调的,社会信用体系建设包括政务诚信、商务诚信、社会诚信的建设,而政务诚信是“三大诚信”体系建设的核心,政府言而有信,才能为企业经营作出良好示范。作为市场监督和管理者,政府应首当其冲推进政务公开,建设诚信政府。为此,国务院通过社会信用体系建设规划纲要(20232023年),要求依法公开在行政管理中掌握的信用信息,提高决策透明度,以政务诚信示范引领全社会诚信建设。 第三,机构组织的变革与全球治理成为必然的选择。 在工业时代,以高度的专业分工形成的韦伯式官僚制组织形态,确实具有较高的效率。然而,这种专业化分工一旦走向极致,就容易出现分工过细、庞大臃肿、条块分割等弊
18、端,无法有效应对新的挑战。大数据技术提供了一种解困之道:在管理的流程中,管理对象和事务产生的数据流只遵循数据本身性质和管理的要求,而不考虑专业分工上的区隔,顺应了全球治理的需要。 1990年,时任国际发展委员会主席勃兰特,首次提出“全球治理”的概念。所谓全球治理,指的是通过具有约束力的国际规制(regimes)和有效的国际合作,解决全球性的政治、经济、生态和安全问题,以维持正常的国际政治经济秩序。为了顺应全球治理的浪潮,我国应当构建自己的全球治理理论。深化对全球化和全球治理的研究,为世界贡献中国对全球治理的先进理念。 当然,构建我国最新的全球治理理论,当务之急是构建我们的国家治理理论,夯实基础
19、。中共中央关于全面深化改革若干重大问题的决定指出,“全面深化改革的总目标是完善和发展中国特色社会主义制度,推进国家治理体系和治理能力现代化”。这充分体现了与时俱进的治理理念,切中了我们国家运行中的核心问题。 推荐第3篇:大数据(推荐) 新技术讲座论文2023-2023(1) XXXX大学 微软新技术系列讲座论文 大数据 一、背景及发展趋势 1.1.背景 大数据(BigData),或称巨量资料,指的是所涉及的资料规模巨大到无 1 / 7 新技术讲座论文2023-2023(1) 法透过目前主流软件工具,在合理的时间内撷取、管理、处理并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Vo
20、lume(海量)、Velocity(高速)、Variety(多样)、Value(价值)。 大数据作为时下最火热的IT行业的词汇,随之数据仓库、数据安全、数据分析、数据挖掘等等围绕大数量的商业价值的利用逐渐成为行业人士争相追捧的利润焦点。 早在1980年,著名未来学家阿尔文托夫勒便在第三次浪潮一书中,将大数据热情地赞颂为“第三次浪潮的华彩乐章”。不过,大约从2023年开始,“大数据”才成为互联网信息技术行业的流行词汇。美国互联网数据中心指出,互联网上的数据每年将增长50%,每两年便将翻一番,而目前世界上90%以上的数据是最近几年才产生的。此外,数据又并非单纯指人们在互联网上发布的信息,全世界的工
21、业设备、汽车、电表上有着无数的数码传感器,随时测量和传递着有关位置、运动、震动、温度、湿度乃至空气中化学物质的变化,也产生了海量的数据信息。 随着云时代的来临,大数据也吸引了越来越多的关注。著云台的分析师团队认为,大数据通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数 十、数百或甚至数千的电脑分配工作。 1.2.发展趋势 斯隆数字巡天收集在其最初的几个星期,比在天文学的历史,早在2000年的整个数据收集更多的数据。自那时以来,它已经积
22、累了140兆兆 字节的信息。这个望远镜的继任者,大天气巡天望远镜,将于2023年在网上和将获得的数据,每5天沃尔玛处理超过100万客户的交易每隔一小时,反过来进口量数据库估计超过2.5 PB的是相当于167次,在美国国会图书馆的书籍 。FACEBOOK处理400亿张照片,从它的用户群。解码最初的人类基因组花了10年来处理时,现在可以在一个星期内实现。 “大数据”的影响,增加了对信息管理专家的需求,甲骨文,IBM,微软和SAP花了超过15亿美元的在软件智能数据管理和分析的专业公司。这个行业自 2 / 7 新技术讲座论文2023-2023(1) 身价值超过1000亿美元,增长近10%,每年两次,这
23、大概是作为一个整体的软件业务的快速。 大数据已经出现,因为我们生活在一个社会中有更多的东西。有46亿全球移动电话用户有1亿美元和20亿人访问互联网。基本上,人们比以往任何时候都与数据或信息交互。 1990年至2023年,全球超过1亿人进入中产阶级,这意味着越来越多的人,谁收益的这笔钱将成为反过来导致更多的识字信息的增长。思科公司预计,到2023年,在互联网上流动的交通量将达到每年667艾字节。 大数据,其影响除了经济方面的,它同时也能在政治、文化等方面产生深远的影响,大数据可以帮助人们开启循“数”管理的模式,也是我们当下“大社会”的集中体现,三分技术,七分数据,得数据者得天下。 谷歌搜索、Fa
24、cebook的帖子和微博消息使得人们的行为和情绪的细节化测量成为可能。挖掘用户的行为习惯和喜好,凌乱纷繁的数据背后找到更符合用户兴趣和习惯的产品和服务,并对产品和服务进行针对性地调整和优化,这就是大数据的价值。大数据也日益显现出对各个行业的推进力。 大数据时代来临首先由数据丰富度决定的。社交网络兴起,大量的UGC(互联网术语,全称为User Generated Content,即用户生成内容的意思)内容、音频、文本信息、视频、图片等非结构化数据出现了。另外,物联网的数据量更大,加上移动互联网能更准确、更快地收集用户信息,比如位置、生活信息等数据。从数据量来说,目前已进入大数据时代,但现在的硬件
25、明显已跟不上数据发展的脚步。 以往大数据通常用来形容一个公司创造的大量非结构化和半结构化数据,而现在提及“大数据”,通常是指解决问题的一种方法,即通过收集、整理生活中方方面面的数据,并对其进行分析挖掘,进而从中获得有价值信息,最终衍化出一种新的商业模式。 虽然大数据目前在国内还处于初级阶段,但是商业价值已经显现出来。首先,手中握有数据的公司站在金矿上,基于数据交易即可产生很好的效益;其次,基于数据挖掘会有很多商业模式诞生,定位角度不同,或侧重数据分析。比如帮企业做内部数据挖掘,或侧重优化,帮企业更精准找到用户,降低营销成本,提高企业销售率,增加利润。 3 / 7 新技术讲座论文2023-202
26、3(1) 未来,数据可能成为最大的交易商品。但数据量大并不能算是大数据,大数据的特征是数据量大、数据种类多、非标准化数据的价值最大化。因此,大数据的价值是通过数据共享、交叉复用后获取最大的数据价值。在他看来,未来大数据将会如基础设施一样,有数据提供方、管理者、监管者,数据的交叉复用将大数据变成一大产业。据统计,目前大数据所形成的市场规模在51亿美元左右,而到2023年,此数据预计会上涨到530亿美元。 二、实施应用 大的数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联
27、网,和可扩展的存储系统。 “这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”哈佛大学 社会学教授加里金 随着大数据应用的爆发性增长,它已经衍生出了自己独特的架构,而且也直接推动了存储、网络以及计算技术的发展。毕竟处理大数据这种特殊的需求是一个新的挑战。硬件的发展最终还是由软件需求推动的,我们很明显的看到大数据分析应用需求正在影响着数据存储基础设施的发展。从另一方面看,这一变化对存储厂商和其他IT基础设施厂商未尝不是一个机会。随着结构化数据和非结构化数据量的持续增长,以及分析数据来源的多样化,此前存储系统的设计已经无法满足大数据应用的
28、需要。存储厂商已经意识到这一点,他们开始修改基于块和文件的存储系统的架构设计以适应这些新的要求。 针对大数据的世界领先品牌存储企业有:IBM、EMC、LSISandForce 、INTEL、惠普、戴尔、甲骨文、日立、赛门铁克等 对于大数据的存储问题,以下问题不可忽视: 容量问题 4 / 7 新技术讲座论文2023-2023(1) 这里所说的“大容量”通常可达到PB级的数据规模,因此,海量数据存储系统也一定要有相应等级的扩展能力。与此同时,存储系统的扩展一定要简便,可以通过增加模块或磁盘柜来增加容量,甚至不需要停机。在解决容量问题上,不得不提LSI公司的全新Nytro智能化闪存解决方案,采用Ny
29、tro产品,客户可以将数据库事务处理性能提高30倍,并且超过每秒4.0GB1的持续吞吐能力,非常适用于大数据分析。 延迟问题 “大数据”应用还存在实时性的问题。特别是涉及到与网上交易或者金融类相关的应用。有很多“大数据”应用环境需要较高的IOPS性能,比如HPC高性能计算。此外,服务器虚拟化的普及也导致了对高IOPS的需求,正如它改变了传统IT环境一样。为了迎接这些挑战,各种模式的固态存储设备应运而生,小到简单的在服务器内部做高速缓存,大到全固态介质可扩展存储系统通过高性能闪存存储,自动、智能地对热点数据进行读/写高速缓存的LSI Nytro系列产品等等都在蓬勃发展。 安全问题 某些特殊行业的
30、应用,比如金融数据、医疗信息以及政府情报等都有自己的安全标准和保密性需求。虽然对于IT管理者来说这些并没有什么不同,而且都是必须遵从的,但是,大数据分析往往需要多类数据相互参考,而在过去并不会有这种数据混合访问的情况,大数据应用催生出一些新的、需要考虑的安全性问题,这就充分体现出利用基于DuraCla 技术的LSI SandForce闪存处理器的优势了,实现了企业级闪存性能和可靠性,实现简单、透明的应用加速,既安全又方便。 成本问题 对于那些正在使用大数据环境的企业来说,成本控制是关键的问题。想控制成本,就意味着我们要让每一台设备都实现更高的“效率”,同时还要减少那些昂贵的部件。目前,像重复数
31、据删除等技术已经进入到主存储市场,而且现在还可以处理更多的数据类型,这都可以为大数据存储应用带来更多的价值,提升存储效率。在数据量不断增长的环境中,通过减少后端存储的消耗,哪怕只是降低几个百分点,这种锱铢必较的服务器也只有LSI推出的Syncro MX-B机架服务器启动盘设备都能够获得明显的投资回报,当今, 5 / 7 新技术讲座论文2023-2023(1) 数据中心使用的传统引导驱动器不仅故障率高,而且具有较高的维修和更换成本。如果用它替换数据中心的独立服务器引导驱动器,则能将可靠性提升多达100倍。并且对主机系统是透明的,能为每一个附加服务器提供唯一的引导镜像,可简化系统管理,提升可靠性,
32、并且节电率高达60%,真正做到了节省成本的问题。 数据的积累 许多大数据应用都会涉及到法规遵从问题,这些法规通常要求数据要保存几年或者几十年。比如医疗信息通常是为了保证患者的生命安全,而财务信息通常要保存7年。而有些使用大数据存储的用户却希望数据能够保存更长的时间,因为任何数据都是历史记录的一部分,而且数据的分析大都是基于时间段进行的。要实现长期的数据保存,就要求存储厂商开发出能够持续进行数据一致性检测的功能以及其他保证长期高可用的特性。同时还要实现数据直接在原位更新的功能需求。 灵活性 大数据存储系统的基础设施规模通常都很大,因此必须经过仔细设计,才能保证存储系统的灵活性,使其能够随着应用分
33、析软件一起扩容及扩展。在大数据存储环境中,已经没有必要再做数据迁移了,因为数据会同时保存在多个部署站点。一个大型的数据存储基础设施一旦开始投入使用,就很难再调整了,因此它必须能够适应各种不同的应用类型和数据场景。 应用感知 最早一批使用大数据的用户已经开发出了一些针对应用的定制的基础设施,比如针对政府项目开发的系统,还有大型互联网服务商创造的专用服务器等。在主流存储系统领域,应用感知技术的使用越来越普遍,它也是改善系统效率和性能的重要手段,所以,应用感知技术也应该用在大数据存储环境里。 针对小用户 依赖大数据的不仅仅是那些特殊的大型用户群体,作为一种商业需求,小型企业未来也一定会应用到大数据。
34、我们看到,有些存储厂商已经在开发一些小型的“大数据”存储系统,主要吸引那些对成本比较敏感的用户。 实际应用 6 / 7 新技术讲座论文2023-2023(1) 包括网络日志,RFID,传感器网络,社会网络,社会数据(由于数据革命的社会),互联网文本和文件;互联网搜索索引;呼叫详细记录,天文学,大气科学,基因组学,生物地球化学,生物,和其他复杂和/或跨学科的科研,军事侦察,医疗记录;摄影档案馆视频档案;和大规模的电子商务 。 三、心得体会 听完此次王老师的大数据讲座,让我受益匪浅。不仅充分了解了大数据的概念,大数据时代的起源、发展及实际应用产品的问世,而且对大数据的神奇很是惊讶。的确,未来的世界
35、需要科技创新,需要技术变革,而大数据就是改变世界的助推器之一,作为即将进入IT行业的我们来说,这既是机遇,也是挑战! 7 / 7 推荐第4篇:大数据认识 大数据认识 班级:B202316电商本科2 姓名:陈家玮 学号:20231624 一 大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。 大数据的5V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。 层面 第一层面是理
36、论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。 第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。 第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。 价值 1)对大量
37、消费者提供产品或服务的企业可以利用大数据进行精准营销 2) 做小而美模式的中小微企业可以利用大数据做服务转型 3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值 趋势 趋势一:数据的资源化 何为资源化,是指大数据成为企业和社会关注的重要战略资源,并已成为大家争相抢夺的新焦点。因而,企业必须要提前制定大数据营销战略计划,抢占市场先机。 趋势二:与云计算的深度结合 大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。自2023年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态
38、,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。 趋势三:科学理论的突破 随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。随之兴起的数据挖掘、机器学习和人工智能等相关技术,可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。 趋势四:数据科学和数据联盟的成立 未来,数据科学将成为一门专门的学科,被越来越多的人所认知。各大高校将设立专门的数据科学类专业,也会催生一批与之相关的新的就业岗位。与此同时,基于数据这个基础平台,也将建立起跨领域的数据共享平台,之后,数据共享将扩展到企业层面,并且成为未来产业的核心一环。 趋势五:数据泄露泛滥 未来几年
39、数据泄露事件的增长率也许会达到100%,除非数据在其源头就能够得到安全保障。可以说,在未来,每个财富500强企业都会面临数据攻击,无论他们是否已经做好安全防范。而所有企业,无论规模大小,都需要重新审视今天的安全定义。在财富500强企业中,超过50%将会设置首席信息安全官这一职位。企业需要从新的角度来确保自身以及客户数据,所有数据在创建之初便需要获得安全保障,而并非在数据保存的最后一个环节,仅仅加强后者的安全措施已被证明于事无补。 趋势六:数据管理成为核心竞争力 数据管理成为核心竞争力,直接影响财务表现。当“数据资产是企业核心资产”的概念深入人心之后,企业对于数据管理便有了更清晰的界定,将数据管
40、理作为企业核心竞争力,持续发展,战略性规划与运用数据资产,成为企业数据管理的核心。数据资产管理效率与主营业务收入增长率、销售收入增长率显著正相关;此外,对于具有互联网思维的企业而言,数据资产竞争力所占比重为36.8%,数据资产的管理效果将直接影响企业的财务表现。 趋势七:数据质量是BI(商业智能)成功的关键 采用自助式商业智能工具进行大数据处理的企业将会脱颖而出。其中要面临的一个挑战是,很多数据源会带来大量低质量数据。想要成功,企业需要理解原始数据与数据分析之间的差距,从而消除低质量数据并通过BI获得更佳决策。 趋势八:数据生态系统复合化程度加强 大数据的世界不只是一个单一的、巨大的计算机网络
41、,而是一个由大量活动构件与多元参与者元素所构成的生态系统,终端设备提供商、基础设施提供商、网络服务提供商、网络接入服务提供商、数据服务使能者、数据服务提供商、触点服务、数据服务零售商等等一系列的参与者共同构建的生态系统。而今,这样一套数据生态系统的基本雏形已然形成,接下来的发展将趋向于系统内部角色的细分,也就是市场的细分;系统机制的调整,也就是商业模式的创新;系统结构的调整,也就是竞争环境的调整等等,从而使得数据生态系统复合化程度逐渐增强。 二 Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有高容错性的特点,并且设计
42、用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求,可以以流的形式访问(streaming acce)文件系统中的数据。 优点 高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖。 高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。 高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。 高容错性。Hadoo
43、p能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。 低成本。与一体机、商用数据仓库以及QlikView、Yonghong Z-Suite等数据集市相比,hadoop是开源的,项目的软件成本因此会大大降低。 hadoop大数据处理的意义 Hadoop得以在大数据处理应用中广泛应用得益于其自身在数据提取、变形和加载(ETL)方面上的天然优势。Hadoop的分布式架构,将大数据处理引擎尽可能的靠近存储,对例如像ETL这样的批处理操作相对合适,因为类似这样操作的批处理结果可以直接走向存储。Hadoop的MapReduce功能实现了将单个任务打碎,并将碎片任务(Map)发送到多个节点上,之
44、后再以单个数据集的形式加载(Reduce)到数据仓库里。 大数据精髓 A.不是随机样本,而是全体数据:在大数据时代,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样(随机采样,以前我们通常把这看成是理所应当的限制,但高性能的数字技术让我们意识到,这其实是一种人为限制) B.不是精确性,而是混杂性:研究数据如此之多,以至于我们不再热衷于追求精确度;之前需要分析的数据很少,所以我们必须尽可能精确地量化我们的记录,随着规模的扩大,对精确度的痴迷将减弱;拥有了大数据,我们不再需要对一个现象刨根问底,只要掌握了大体的发展方向即可,适当忽略微观层面上的精确度,会
45、让我们在宏观层面拥有更好的洞察力 C.不是因果关系,而是相关关系:我们不再热衷于找因果关系,寻找因果关系是人类长久以来的习惯,在大数据时代,我们无须再紧盯事物之间的因果关系,而应该寻找事物之间的相关关系;相关关系也许不能准确地告诉我们某件事情为何会发生,但是它会提醒我们这件事情正在发生。 开源大数据生态圈: 1、Hadoop HDFS、HadoopMapReduce, HBase、Hive 渐次诞生,早期Hadoop生态圈逐步形成。 2、.Hypertable是另类。它存在于Hadoop生态圈之外,但也曾经有一些用户。 3、NoSQL,membase、MongoDb 商用大数据生态圈: 1、一
46、体机数据库/数据仓库:IBM PureData(Netezza), OracleExadata, SAP Hana等等。 2、数据仓库:TeradataAsterData, EMC GreenPlum, HPVertica 等等。 3、数据集市:QlikView、Tableau、以及国内的Yonghong Data Mart 。 大数据分析 Analytic Visualizations(可视化分析) 不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。 Data Mining Algorithms(数据挖掘算法) 可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。 Predictive Analytic Capabilities(预测性分析能力) 数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。 Semantic Engines(语