(新课标人教A版)选修1-2数学同步课件:2-1-1《合情推理》.ppt

上传人:赵** 文档编号:66100586 上传时间:2022-12-14 格式:PPT 页数:64 大小:892KB
返回 下载 相关 举报
(新课标人教A版)选修1-2数学同步课件:2-1-1《合情推理》.ppt_第1页
第1页 / 共64页
(新课标人教A版)选修1-2数学同步课件:2-1-1《合情推理》.ppt_第2页
第2页 / 共64页
点击查看更多>>
资源描述

《(新课标人教A版)选修1-2数学同步课件:2-1-1《合情推理》.ppt》由会员分享,可在线阅读,更多相关《(新课标人教A版)选修1-2数学同步课件:2-1-1《合情推理》.ppt(64页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、课程目标1双基目标(1)了解合情推理的含义,能利用归纳推理和类比推理等进行简单的推理,体会并认识合情推理在数学发展中的作用(2)掌握演绎推理的基本模式,体会它们的重要性,并能运用它们进行一些简单的推理(3)了解合情推理和演绎推理之间的联系和差异(4)了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程与特点(5)了解间接证明的一种基本方法反证法;了解反证法的思考过程、特点2情感目标(1)结合已学过的数学实例和日常生活中的实例,让学生体会数学与其他学科以及实际生活的联系(2)通过合理推理与演绎推理的学习,让学生了解数学不单是现成结论的体系,结论的发现过程也是数学的重要内容,从

2、而形成对数学较为完整的认识,学习合情推理有助于培养学生进行归纳时的严谨作风,从而形成实事求是、力戒浮夸的思维习惯(3)通过本章的学习,有助于发展学生的数学思维能力,提高学生的数学素养(4)通过本章的学习,有助于发展学生的创新意识和创新能力重点难点本章重点是合情推理、演绎推理以及证明方法直接证明和间接证明合情推理是数学发现的分析过程中常用到的思维方法,具有猜测和发现结论,探索和提供思路的作用,有助于学生理解力的提高演绎推理是证明数学结论,构建数学体系的重要形式、培养和提高学生的演绎推理或逻辑推理是高中数学的重要目标,数学结论的重要性必须通过逻辑证明来保证证明包括直接证明和间接证明学法探究学习本章

3、时要注意基本数学思想,如归纳、类比、演绎推理以及综合法、分析法、反证法的思想的理解和应用学习过程中应结合实例,运用合情推理去探索、猜测一些数学结论,并用演绎推理确认所得结论的正确性,或者用反例推翻错误的猜想学习重点在于理解与掌握研究问题的思维方式,感悟到猜测一个问题有时比证明一个问题更重要,以逐步形成科学的探索精神,而不要刻意去追求对概念的抽象表述21合情推理与演合情推理与演绎绎推理推理1知识与技能了解合情推理的含义2过程与方法能利用归纳推理和类比推理进行简单的推理体会并认识合情推理在教学发现中的作用本节重点:合情推理的定义及归纳推理和类比推理的定义本节难点:归纳和类比推理的基本方法1对归纳推

4、理的理解归纳推理是从个别事实中概括出一般结论的一种推理模式归纳推理的前提是特殊的情况,立足于观察、试验或经验的基础上,归纳推理的结论具有猜测的性质2归纳推理的一般步骤(1)观察:通过观察个别事物发现某些相同性质(2)概括、归纳:从已知的相同性质中概括、归纳出一个明确表述的一般性命题(3)猜测一般性结论:在一般情况下,如果归纳的个别情况越多,越具有代表性,那么猜测出的一般性结论也就越可靠3对类比推理的理解类比推理是在两类不同的事物之间进行对比,找出若干相同或相似之处之后,推测在其他方面也可能存在相同或相似之处的一种推理模式类比推理的关键在于明确指出两类对象在某些方面的相似特征4类比推理的一般步骤

5、(1)找出两类事物之间的相似性或一致性(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想)一般情况下,如果类比的两类事物的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的结论就越可靠类比推理的结论既可能真,也可能假,它是一种由特殊到特殊的认识过程,具有十分重要的实用价值1归纳推理由某类事物的 具有某些特征,推出该类事物的 都具有这些特征的推理,或者由概括出的推理,称为归纳推理(简称 )简言之,归纳推理是由、由 的推理2类比推理由两类对象具有和其中一类对象的,推出另一类对象也具有 的推理称为类比推理(简称 )简言之,类比推理是由的推理部分对象全部对象个别事实一般

6、结论部分到整体个别到一般某些类似特征某些已知特征这些特征类比特殊到特殊归纳3合情推理归纳推理和类比推理都是根据,经过,再进行 ,然后提出 的推理我们把它们称为合情推理通俗地说,合情推理是指“”的推理已有的事实观察、分析、比较、联想归纳、类比猜想合乎情理例1下面各列数都依照一定规律排列,在括号里填上适当的数:(1)1,5,9,13,17,();解析要在括号里填上适当的数,必须正确地判断出每列数所具有的规律,为此必须进行仔细的观察和揣摩(1)考察相邻两数的差:514,954,1394,17134可见,相邻两数之差都是4.按此规律,括号里的数减去17等于4,所以应填入括号里的数是17421.(4)分

7、成两列数:奇数位的数为32,16,(),4,2.可见前面括号中应填入8;偶数位的数为31,26,(),16,11.括号中的数应填入21.所以两括号内依次填入8,21.点评从上面例子可以看到,观察时不可把眼光停留在某一点上固定不变,而要注意根据问题特点不断调整自己观察的角度,以利于观察出有一定隐蔽性的内在规律若an12an1(n1,2,3,)且a11(1)求a2,a3,a4,a5;(2)归纳猜想通项公式an.解析(1)由已知a11,an12an1,得a23221,a37231,a415241,a531251.(2)归纳猜想,得an2n1(nN*).例2如图,在圆内画一条线段,将圆分成两部分;画两

8、条线段,彼此最多分割成4条线段,同时将圆分割成4部分;画三条线段,彼此最多分割成9条线段,将圆最多分割成7部分;画四条线段,彼此最多分割成16条线段,将圆最多分割成11部分那么:(1)在圆内画5条线段,它们彼此最多分割成多少条线段?将圆最多分割成多少部分?(2)猜想:圆内两两相交的n(n2)条线段,彼此最多分割成多少条线段?将圆最多分割成多少部分?分析由题目可获取以下主要信息:在圆内画线段;所画线段彼此分割线段的条数和将圆分割的部分的个数解答本题可先从几个特殊的数值入手,再根据给出的数值特点进行归纳猜想点评在几何中随着点、线、面等元素的增加,探究相应的线段、交点、区域部分等的增加情况常用归纳推

9、理解决,分析时递推关系的寻找是重点(1)如图(a)、(b)、(c)、(d)所示为四个平面图形,数一数,每个平面图形各有多少个顶点?多少条边?它们将平面围成了多少个区域?(2)观察上表,推断一个平面图形的顶点数、边数、区域数之间有什么关系?顶点数边数区域数(a)(b)(c)(d)解析各平面图形的顶点数、边数、区域数分别为(2)观察:3232;86122;6592;107152通过观察发现,它们的顶点数V,边数E,区域数F之间的关系为VFE2.顶点数边数区域数(a)332(b)8126(c)695(d)10157 请运用类比思想,对于空间中的四面体VBCD,存在什么类似的结论?并用体积法证明解析考

10、虑到用“面积法”证明结论时,把O点与三角形的三个顶点连结,把三角形分成三个三角形,利用面积相等来证明相应结论在证明四面体中类似结论时,可考虑利用体积的方法相应结论点评在类比推理中,找出两类事物之间的相似性或一致性,特别是由平面向空间类比中,注意研究空间和平面的根本区别找出三角形与四面体的相似性质,并用三角形的下列性质类比四面体的有关性质:(1)三角形任意两边之和大于第三边;(2)三角形的三条内角平分线交于一点,且这个点是三角形内切圆的圆心;(3)三角形的中位线等于第三边的一半,且平行于第三边解析三角形与四面体有下列相似的性质:三角形是平面内由直线段所围成的最简单的封闭图形;四面体是空间中由平面

11、所围成的最简单的封闭图形三角形可以看作平面上一条线段外一点与这条线段上各点连线所形成的图形;四面体可以看作空间中一个三角形所在平面外一点与这个三角形上各点连线所形成的图形根据三角形的性质,可以推测空间四面体的性质如下:三角形四面体三角形任意两边之和大于第三边四面体任意三个面的面积之和大于第四个面的面积三角形的三条内角平分线交于一点,且这个点是三角形内切圆的圆心四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心三角形的中位线等于第三边的一半,且平行于第三边四面体的中截面(以任意三条棱的中点为顶点的三角形)的面积等于第四个面的面积的 ,且平行于第四个面点评虽然由类比所得到的结论未必是

12、正确的,但它所具有的由特殊到特殊的认识功能,对于发现新的规律和事实却是十分有用的例4在等差数列an中,若a100,则有等式a1a2ana1a2a19n(n19,nN)成立,类比上述性质,相应地在等比数列bn中,若b91,则有等式_成立答案b1b2bnb1b2b17n(n17,nN*)解析本题考查等差数列与等比数列的类比一种较本质的认识是:等差数列用减法定义性质用加法表述(若m、n、p、qN,且mnpq,则amanapaq);等比数列用除法定义性质用乘法表述(若m、n、p、qN,且mnpq,则amanapaq)由此,猜想本题的答案为:b1b2bnb1b2b17n(n17,nN*)事实上,对等差数

13、列an,如果ak0,则an1a2k1nan2a2k2nakak0.所以有:a1a2ana1a2an(an1an2a2k2na2k1n)(n2k1,nN)从而对等比数列bn,如果bk1,则有等式:b1b2bnb1b2b2k1n(n2k1,nN)成立点评本题是一道小巧而富于思考的妙题,主要考查观察分析能力,抽象概括能力,考查运用类比思想方法由等差数列an而得到等比数列bn的新的一般性的结论根据等差数列的性质,利用类比方法试写出等比数列的一些性质.等差数列性质an,公差d等比数列性质bn,公比q若mnpq则amanapaq若mn2p,则aman2apak,akm,ak2m,构成公差为md的等差数列S

14、n为前n项和,则Sn,S2nSn,S3nS2n成公差为n2d的等差数列aman(mn)d点评类比推理又称类比法它是根据两个或两类对象有部分属性相同,从而推出它们的其它属性也相同的推理简单地说,类比推理是由特殊到特殊的推理例5请用类比推理完成下表一、选择题1数列2,5,11,20,x,47,中的x等于()A28B32C33D27答案B解析 由以上各数可得每两个数之间依次差3,6,9,12故x2012322下列说法正确的是()A由合情推理得出的结论一定是正确的B合情推理必须有前提有结论C合情推理不能猜想D合情推理得出的结论不能判断正误答案B解析合情推理的结论不一定正确,是否正确需进一步证明且合情推

15、理有前提,故A、D错,合情推理能猜想,故C错3若把正整数按下图所示的规律排序,是从2010到2012的箭头方向依次为()1458912 2367 1011A B C D答案D解析根据箭头方向找规律,每相邻四个数字,箭头方向相同,20104502余2,故同数字2处的方向,故选D.4下列说法中正确的是()A合情推理就是正确的推理B合情推理就是类比推理C归纳推理是从一般到特殊的推理过程D类比推理是从特殊到特殊的推理过程答案D二、填空题5由数列1,10,100,1000,猜想,数列的第n项可能是_答案10n1.解析 1100,10101,100102,1000103,可猜想第n项是10n16正方形的面积为边长的平方,则在立体几何中,与之类比的图形是_,结论是_答案正方体正方体的体积为棱长的立方解析利用类比思想可知平面图形与空间几何体对应,故正方形类比正方体,面积与体积类比

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁