《2.3.1等比数列09294.ppt》由会员分享,可在线阅读,更多相关《2.3.1等比数列09294.ppt(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、名称名称等差数列等差数列概念概念常数常数性质性质通项通项通项通项变形变形旧知回顾旧知回顾从第从第2项起项起,每一项与它每一项与它前前一项的一项的差差等等同一个常数同一个常数公差公差(d)(2)一位数学家说过:你如果能将一张纸对折一位数学家说过:你如果能将一张纸对折38次,次,我就能顺着它在今天晚上爬上月球。我就能顺着它在今天晚上爬上月球。以上两个实例所包含的数学问题以上两个实例所包含的数学问题:创设情景,引入新课(1)“一尺之棰,日取其半,万世不竭一尺之棰,日取其半,万世不竭.”1,(1)1,2,4,8,16,32,(2)v 一般地,如果一个数列从第一般地,如果一个数列从第2项起,每一项起,每
2、一项与它的项与它的前前一项的一项的 比比 等于等于同一个常数同一个常数,那么这个数列就叫做等那么这个数列就叫做等比比数列数列,这个常数叫,这个常数叫做等比数列的做等比数列的公比公比(q)。v 一般地,如果一个数列从第一般地,如果一个数列从第2项起,每一项起,每一项与它的项与它的前前一项的一项的 差差 等于等于同一个常数同一个常数,那么这个数列就叫做等那么这个数列就叫做等差差数列数列,这个常数叫,这个常数叫做等差数列的做等差数列的公差公差(d)。)。等比数列等比数列等差数列等差数列等比数列概念典例分析解:例例1 1 已知数列已知数列 的通项公式为的通项公式为 ,试问,试问这个数列是等比数列吗?这
3、个数列是等比数列吗?等比数列通项公式的推导:等比数列通项公式的推导:(n-1)个 式子 方法一方法一:叠乘法叠乘法 方法二方法二:归纳法归纳法11-=nnqaa等比数列的通项公式当当q=1时,这是时,这是一个常函数。一个常函数。等比数列等比数列 ,首项为首项为 ,公比为公比为q,则通项公式为则通项公式为在等差数列在等差数列 中中试问:在等比数列试问:在等比数列 中,如果知道中,如果知道 和公和公比比q,能否求,能否求?如果能,请写出表达式。?如果能,请写出表达式。变形结论变形结论:等比中项的定义等比中项的定义 如果在如果在a与与b中间插入一个数中间插入一个数G,使,使a,G,b成成等比数列,那
4、么等比数列,那么G就叫做就叫做a与与b的等比中项的等比中项 在这个定义下,由等比数列的定义可得在这个定义下,由等比数列的定义可得 例例3 在在4与与1/4 之间插入之间插入3个数,使这个数,使这5个数成个数成等比数列,求插入的等比数列,求插入的3个数。个数。典型例题课堂互动课堂互动(2 2)一个等比数列的第)一个等比数列的第2 2项是项是10,10,第第3 3项是项是20,20,求它的第求它的第1 1项与第项与第4 4项项.(1)(1)一个等比数列的第一个等比数列的第5 5项是项是 ,公比是公比是 ,求它的第,求它的第1 1项;项;解得,解得,答:它的第一项是答:它的第一项是36.解:设它的第
5、一项是解:设它的第一项是 ,则由题意得,则由题意得解:设它的第一项是解:设它的第一项是 ,公比是,公比是 q,则由题意得,则由题意得答:它的第一项是答:它的第一项是5,第,第4项是项是40.,解得解得,因此因此等比数列等比数列名称名称等差数列等差数列概念概念常数常数性质性质通项通项通项通项变形变形回顾小结回顾小结从第从第2项起项起,每一项与它每一项与它前前一项的一项的比比等等同一个常数同一个常数公比公比(q)q可正可负可正可负,但不可为零但不可为零从第从第2项起项起,每一项与它每一项与它前前一项的一项的差差等等同一个常数同一个常数公差公差(d)d可正可负可正可负,且可以为零且可以为零 思考:思考:一张报纸对折一张报纸对折38次后,其高次后,其高度真的能达到月球的高度吗?度真的能达到月球的高度吗?假如一张纸0.2毫米折38次后=549755km384000Km