3.1.1与3.1.2空间向量及其加减与数乘运算(2个课时)60657.ppt

上传人:赵** 文档编号:66097304 上传时间:2022-12-14 格式:PPT 页数:25 大小:325KB
返回 下载 相关 举报
3.1.1与3.1.2空间向量及其加减与数乘运算(2个课时)60657.ppt_第1页
第1页 / 共25页
3.1.1与3.1.2空间向量及其加减与数乘运算(2个课时)60657.ppt_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《3.1.1与3.1.2空间向量及其加减与数乘运算(2个课时)60657.ppt》由会员分享,可在线阅读,更多相关《3.1.1与3.1.2空间向量及其加减与数乘运算(2个课时)60657.ppt(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、空间向量及其加减与数乘运算高二(5)班复习回顾:平面向量1、定义:既有大小又有方向的量。几何表示法:用有向线段表示字母表示法:用小写字母表示,或者用表示向量的有向线段的起点和终点字母表示。相等向量:长度相等且方向相同的向量ABCD2、平面向量的加法、减法与数乘运算向量加法的三角形法则ab向量加法的平行四边形法则ba向量减法的三角形法则aba ba ba (k0)ka (k0)k向量的数乘a3、平面向量的加法、减法与数乘运算律加法交换律:加法结合律:数乘分配律:F1F2F1=10NF2=15NF3F3=15N平面向量概念加法减法数乘运算运算律定义 表示法 相等向量减法:三角形法则加法:三角形法则

2、或平行四边形法则空间向量及其加减与数乘运算空间向量具有大小和方向的量数乘:ka,k为正数,负数,零加法交换律加法结合律数乘分配律ABCDABCDABCDABCDA1B1C1D1CABDba平面向量概念加法减法数乘运算运算律定义 表示法 相等向量减法:三角形法则加法:三角形法则或平行四边形法则空间向量及其加减与数乘运算空间向量具有大小和方向的量数乘:ka,k为正数,负数,零加法交换律加法结合律数乘分配律abOABba结论:空间任意两个向量都是共面向量,所以它们可用结论:空间任意两个向量都是共面向量,所以它们可用同一平面内的两条有向线段表示。同一平面内的两条有向线段表示。因此凡是涉及空间任意两个向

3、量的问题,平面向量中有因此凡是涉及空间任意两个向量的问题,平面向量中有关结论仍适用于它们。关结论仍适用于它们。平面向量概念加法减法数乘运算运算律定义 表示法 相等向量减法:三角形法则加法:三角形法则或平行四边形法则空间向量及其加减与数乘运算空间向量具有大小和方向的量数乘:ka,k为正数,负数,零加法交换律加法结合律数乘分配律加法交换律数乘分配律加法:三角形法则或平行四边形法则减法:三角形法则数乘:ka,k为正数,负数,零加法结合律成立吗?加法结合律:abcab+c+()OABCab+abcab+c+()OABCbc+推广:(1)首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向

4、量;(2)首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量。例1:已知平行六面体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1,化简下列向量表达式,并标出化简结果的向量。(如图)ABCDA1B1C1D1ABCDABCDA1B1C1D1ABCDa平行六面体:ABCD-AABCD-A1 1B B1 1C C1 1D D1 1例1:已知平行六面体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1,化简下列向量表达式,并标出化简结果的向量。(如图)ABCDA1B1C1D1GM 始点相同的三个不共面向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的

5、对角线所示向量F1F2F1=10NF2=15NF3=15NF3例2:已知平行六面体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1,求满足下列各式的x的值。ABCDA1B1C1D1ABMCGD练习1在空间四边形在空间四边形ABCDABCD中中,点点M M、G G分别是分别是BCBC、CDCD边的中点边的中点,化简化简ABMCGD(2)原式练习1在空间四边形在空间四边形ABCDABCD中中,点点M M、G G分别是分别是BCBC、CDCD边的中点边的中点,化简化简ABCDDCBA练习2在立方体在立方体ACAC1 1中中,点点E E是面是面ACAC 的中心的中心,求下求下列各式中

6、的列各式中的x,y.x,y.EABCDDCBA练习2E在立方体在立方体ACAC1 1中中,点点E E是面是面ACAC 的中心的中心,求下求下列各式中的列各式中的x,y.x,y.ABCDDCBA练习2E在立方体在立方体ACAC1 1中中,点点E E是面是面ACAC 的中心的中心,求下列各式中的求下列各式中的x,y.x,y.平面向量概念加法减法数乘运算运算律定义 表示法 相等向量减法:三角形法则加法:三角形法则或平行四边形法则空间向量具有大小和方向的量数乘:ka,k为正数,负数,零加法交换律加法结合律数乘分配律小结加法交换律数乘分配律加法结合律类比思想 数形结合思想数乘:ka,k为正数,负数,零作业思考题:考虑空间三个向量共面的充要条件.ababOABb结论:空间任意两个向量都是共面向量,所以它们可用结论:空间任意两个向量都是共面向量,所以它们可用同一平面内的两条有向线段表示。同一平面内的两条有向线段表示。因此凡是涉及空间任意两个向量的问题,平面向量中有因此凡是涉及空间任意两个向量的问题,平面向量中有关结论仍适用于它们。关结论仍适用于它们。思考:它们确定的平面是否唯一?思考:它们确定的平面是否唯一?思考:空间任意两个向量是否可能异面?思考:空间任意两个向量是否可能异面?

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁