《物理竞赛课件9:动量与动量守恒.ppt》由会员分享,可在线阅读,更多相关《物理竞赛课件9:动量与动量守恒.ppt(41页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、中国航天CZ1F 动量定理动量定理 动量定理的应用动量定理的应用(1)遵从矢量性与独立性原理遵从矢量性与独立性原理(2)合理与必要的近似合理与必要的近似(3)尽量取大系统与整过程尽量取大系统与整过程 如图所示,顶角为如图所示,顶角为2、内壁光滑的圆锥体倒立竖直固定在、内壁光滑的圆锥体倒立竖直固定在P点,点,中心轴中心轴PO位于竖直方向,一质量为位于竖直方向,一质量为m的质点以角速度的质点以角速度绕竖直轴沿圆锥内壁做匀绕竖直轴沿圆锥内壁做匀速圆周运动,已知速圆周运动,已知a、b两点为质点两点为质点m运动所通过的圆周一直径上的两点,求质点运动所通过的圆周一直径上的两点,求质点m从从a点经半周运动到
2、点经半周运动到b点,圆锥体内壁对质点施加的弹力的冲量点,圆锥体内壁对质点施加的弹力的冲量分析受力:分析受力:mgFNF向向运动半周动量变化量为运动半周动量变化量为其中轨道半径其中轨道半径r由由合外力冲量为合外力冲量为重力冲量为重力冲量为IIGIN弹力冲量为弹力冲量为mab2OP 如图所示,如图所示,质量为质量为M的小车在光滑水平面上以的小车在光滑水平面上以v0向左匀速运动,一质量为向左匀速运动,一质量为m的小球从高的小球从高h处自由下落,与小车碰撞后,反弹上升的高度仍为处自由下落,与小车碰撞后,反弹上升的高度仍为h设设Mm,碰,碰撞时弹力撞时弹力FNmg,球与车之间的动摩擦因数为,球与车之间的
3、动摩擦因数为,则小球弹起后的水平速度为,则小球弹起后的水平速度为A.B.0 C.D.v0Mh 小球与车板相互作用,小球动量发生变化:水平方向动量小球与车板相互作用,小球动量发生变化:水平方向动量从从0mvx,竖直方向动量大小不变,方向反向,对小球分别竖直方向动量大小不变,方向反向,对小球分别在竖直、水平方向运用动量定理。在竖直、水平方向运用动量定理。设小球与车板相互作用时设小球与车板相互作用时间间t,小球碰板前速度,小球碰板前速度vy,由,由由动量定理FfFNmv0 如图所示,如图所示,滑块滑块A和和B用轻线连接在一起后放在水平桌面上,水平恒力用轻线连接在一起后放在水平桌面上,水平恒力F作用在
4、作用在B上,使上,使A、B一起由静止开始沿水平桌面滑动已知滑块一起由静止开始沿水平桌面滑动已知滑块A、B与水平桌与水平桌面之间的动摩擦因数均为面之间的动摩擦因数均为力力F作用时间作用时间t后后A、B连线断开,此后力连线断开,此后力F仍作用于仍作用于B试求滑块试求滑块A刚刚停住时,滑块刚刚停住时,滑块B的速度大小?两滑块质量分别为的速度大小?两滑块质量分别为mA、mB A BF设绳断时设绳断时A、B速度为速度为V,绳断后,绳断后A运运动时间为动时间为T;则在则在t+T时间内对系统有时间内对系统有而在而在t时间内对系统有时间内对系统有其中其中 如图所示,椭圆规的尺如图所示,椭圆规的尺AB质量为质量
5、为2m,曲柄,曲柄OC质量为质量为m,而套管而套管A、B质量均为质量均为M已知已知OC=AC=CB=l;曲柄和尺的重心分别在其中点上;曲柄和尺的重心分别在其中点上;曲柄绕曲柄绕O轴转动的角速度轴转动的角速度为常量;开始时曲柄水平向右,求:曲柄转成竖直向上为常量;开始时曲柄水平向右,求:曲柄转成竖直向上过程中,外力对系统施加的平均冲量过程中,外力对系统施加的平均冲量 专题专题9-例例1确定曲柄确定曲柄m、尺、尺2m、套管、套管A、B质心的速度,确定质点系的动量质心的速度,确定质点系的动量变化,对系统运用动量定理变化,对系统运用动量定理曲柄、尺的质心及套管A、B的速度相关关系如示曲柄质心速度曲柄质
6、心速度尺质心速度尺质心速度套管套管A速度速度套管套管B速度速度动量动量动量动量系统动量大小不变为由动量定理,在从水平变成竖直过程中由动量定理,在从水平变成竖直过程中 如图所示,光滑的水平面上停着一只木球和载人小车,木如图所示,光滑的水平面上停着一只木球和载人小车,木球质量为球质量为m,人和车总质量为,人和车总质量为M,已知,已知M m=16 1,人以速率,人以速率v沿水平面将木球推沿水平面将木球推向正前方的固定挡板,木球被挡板弹回之后,人接住球后再以同样的对地速率将向正前方的固定挡板,木球被挡板弹回之后,人接住球后再以同样的对地速率将球推向挡板设木球与挡板相碰时无动能损失求人经过几次推木球后,
7、再也不球推向挡板设木球与挡板相碰时无动能损失求人经过几次推木球后,再也不能接住木球?能接住木球?专题专题9-例例2对木球与载人小车这个系统,对木球与载人小车这个系统,动量从初时的动量从初时的0,到最终末动,到最终末动量至少为量至少为(M+m)v,是墙对是墙对木球冲量作用的结果木球冲量作用的结果:经经9次推木球后,再也接不住木球次推木球后,再也接不住木球元贝驾考 元贝驾考2016科目一 科目四驾考宝典网 http:/驾考宝典2016科目一 科目四 一根均匀的不可伸缩的软缆绳全长为一根均匀的不可伸缩的软缆绳全长为l、质量为、质量为M开始时,开始时,绳的两端都固定在邻近的挂钩上,自由地悬着,如图(甲
8、)某时刻绳的一端松绳的两端都固定在邻近的挂钩上,自由地悬着,如图(甲)某时刻绳的一端松开了,缆绳开始下落,如图(乙),每个挂钩可承受的最大负荷为开了,缆绳开始下落,如图(乙),每个挂钩可承受的最大负荷为FN(大于缆绳(大于缆绳的重力的重力Mg),为使缆绳在下落时,其上端不会把挂钩拉断,),为使缆绳在下落时,其上端不会把挂钩拉断,Mg与与FN必须满足什必须满足什么条件?假定下落时,缆绳每个部分在达到相应的最终位置之后就都停止不动么条件?假定下落时,缆绳每个部分在达到相应的最终位置之后就都停止不动 专题专题9-例例3甲甲乙乙ABC松开左缆绳松开左缆绳,自由下落自由下落h时,左侧绳速度为时,左侧绳速
9、度为挂钩所受的力由两部分组成:一是承静止悬挂在钩下的那部分缆绳的重;一是受紧接着落向静止部分最下端的绳元段的冲力F,挂钩不被拉断,这两部分力的总和不得超过钩的最大负荷 研究左边绳处于最下端的极小段绳元研究左边绳处于最下端的极小段绳元 x:受右受右边静止绳作用边静止绳作用,使之速度在极短时间使之速度在极短时间 t内减为内减为0,由动量定理由动量定理因时间极短内,忽略重力冲量,元段的平均速度取当左边绳全部落下并伸下时当左边绳全部落下并伸下时,h=l挂钩不断的条件是挂钩不断的条件是 一一根根铁铁链链,平平放放在在桌桌面面上上,铁铁链链每每单单位位长长度度的的质质量量为为现现用用手手提提起起链链的的一
10、一端端,使使之之以以速速度度v竖竖直直地地匀匀速速上上升升,试试求求在在从从一端离地开始到全链恰离地,手的拉力的冲量,链条总长为一端离地开始到全链恰离地,手的拉力的冲量,链条总长为L 图示是链的一微元段离地的情景,该段微元长 Fx该段微元质量 设该元段从静止到被提起历时设该元段从静止到被提起历时t,那么竖直上升部分长那么竖直上升部分长x的的链条在手的拉链条在手的拉力力F、重力的冲量作用下,发生了末段、重力的冲量作用下,发生了末段微元动量的变化,由动量定理微元动量的变化,由动量定理:力随时间线性变化,故可用算术平均力求整个过程手拉力F的总冲量:如如图图所所示示,水水车车有有一一孔孔口口,水水自自
11、孔孔口口射射出出已已知知水水面面距距孔孔口口高高h,孔孔口口截截面面积积为为a,水水的的密密度度为为若若不不计计水水车车与与地地面面的的摩摩擦,求水车加于墙壁的水平压力擦,求水车加于墙壁的水平压力 h先求水从孔口射出的速度v对处于孔口的一片水由动能定理对处于孔口的一片水由动能定理:对整个水车,水平方向受墙壁的压力对整个水车,水平方向受墙壁的压力F,在时间,在时间 t内有质量为内有质量为 的水获得速度的水获得速度 由动量定理由动量定理:水车加于墙壁的压力是该力的反作用力,大小为 逆风行船问题逆风行船问题:如图如图,帆船在逆风的情况下仍能帆船在逆风的情况下仍能只依靠风力破浪航行设风向从只依靠风力破
12、浪航行设风向从B向向A,位于,位于A点处的帆船要想点处的帆船要想在静水中最后驶达目标在静水中最后驶达目标B点,应如何操纵帆船?要说明风对船帆的点,应如何操纵帆船?要说明风对船帆的作用力是如何使船逆风前进达到目标的作用力是如何使船逆风前进达到目标的专题专题9-例例4AB风向风向设计如示航线设计如示航线 风向风向F风对帆风对帆F1F2航线航线船帆船帆AB航向与风向成角风吹到帆面,与帆面发生弹性碰撞后以同样的反射风吹到帆面,与帆面发生弹性碰撞后以同样的反射角折回风与帆的碰撞,对帆面施加了一个冲量,角折回风与帆的碰撞,对帆面施加了一个冲量,使船受到了一个方向与帆面垂直的压力使船受到了一个方向与帆面垂直
13、的压力F,这个力,这个力沿船身方向及垂直于船身方向的分力沿船身方向及垂直于船身方向的分力F1和和F2,F2正正是船沿航线前进的动力,是船沿航线前进的动力,F1则有使船侧向漂移的作则有使船侧向漂移的作用,可以认为被水对船的横向阻力平衡用,可以认为被水对船的横向阻力平衡风帆与船行方向成角只要适时地改变只要适时地改变船身走向,同时船身走向,同时调整帆面的方位,调整帆面的方位,船就可以依靠风船就可以依靠风力沿锯齿形航线力沿锯齿形航线从从A驶向驶向B 续解续解mv设设帆面受帆面受风风面面积为积为S,空气密度,空气密度为为,风风速速为为v,在,在t时间时间内到达帆面并被反内到达帆面并被反弹弹的空气的空气质
14、质量是量是F2F1F风对帆风对帆mvpm反反弹弹空气空气动动量量变变化量化量由由动动量定理量定理,帆帆(船船)对风对风的冲力的冲力帆(船)受到的前进动力F2为将风即运动的空气与帆面的碰撞简化为弹性碰撞将风即运动的空气与帆面的碰撞简化为弹性碰撞!船沿航线方向的动力大小与扬帆方向有关,帆面与船沿航线方向的动力大小与扬帆方向有关,帆面与船行方向的夹角船行方向的夹角适当,可使船获得尽大的动力适当,可使船获得尽大的动力设风筝面与设风筝面与水平成水平成角,风对角,风对风筝的冲力为风筝的冲力为F,其中作为风,其中作为风筝升力的分量为筝升力的分量为Fy,风筝面积,风筝面积为为S,右图给出各矢量间关系,右图给出
15、各矢量间关系 放放风风筝筝时时,风风沿沿水水平平方方向向吹吹来来,要要使使风风筝筝得得到到最最大大上上升升力力,求求风风筝筝平平面面与与水水平平面面的的夹夹角角设设风风被被风风筝筝面面反反射射后后的的方方向向遵遵守反射定律守反射定律 mvmvFFymv风筝截面风筝截面根据基本不等式性质由动量定理:由动量定理:反冲模型反冲模型 Mm系统总动量为零系统总动量为零平均动量守恒平均动量守恒在系统各部分相互作用过程的各瞬间,总有在系统各部分相互作用过程的各瞬间,总有 常以位移表示速度常以位移表示速度须更多关注须更多关注“同一性同一性”与与“同时同时性性”“同一性同一性”:取同一惯性参考系描述取同一惯性参
16、考系描述m1、m2的动量的动量“同时性同时性”:同一时段系统的总动量守恒同一时段系统的总动量守恒OxS人人 一条质量为一条质量为M、长为、长为L的小船静止在平静的的小船静止在平静的水面上,一个质量为水面上,一个质量为m的人站立在船头如果不计水对的人站立在船头如果不计水对船运动的阻力,那么当人从船头向右走到船尾的时候,船运动的阻力,那么当人从船头向右走到船尾的时候,船的位移有多大?船的位移有多大?设船设船M对地位移为对地位移为x,以向右方向为正,用,以向右方向为正,用位移表速度,由位移表速度,由“”表示船的位移方向向左表示船的位移方向向左人对船的位移人对船的位移向右取正向右取正船对地的位移船对地
17、的位移未知待求未知待求运算法则运算法则 如图所示,质量为如图所示,质量为M、半径为、半径为R的光滑圆环静止的光滑圆环静止在光滑的水平面上,有一质量为在光滑的水平面上,有一质量为m的小滑块从与的小滑块从与O等高处等高处开始无初速下滑,当到达最低点时,圆环产生的位移大开始无初速下滑,当到达最低点时,圆环产生的位移大小为小为_R设圆环位移大小为设圆环位移大小为x,并以向左为正并以向左为正:mMORxR“”表示环位移方向向表示环位移方向向右右 气球质量为气球质量为M,下面拖一条质量不计的软梯,质量为,下面拖一条质量不计的软梯,质量为m的人站在软梯上端距地面高为的人站在软梯上端距地面高为H,气球保持静止
18、状态,求,气球保持静止状态,求人能安全人能安全到达地面,软梯的最小长度;到达地面,软梯的最小长度;若软梯长为若软梯长为H,则人从软梯下端到上,则人从软梯下端到上端时距地面多高?端时距地面多高?HL-汽球相对人汽球相对人上升高度即绳上升高度即绳梯至少长度梯至少长度以向下为正,用位移表速度以向下为正,用位移表速度H人上升高度人上升高度h以向上为正,用位移表速度,以向上为正,用位移表速度,如图所示浮动起重机(浮吊)从岸上吊起如图所示浮动起重机(浮吊)从岸上吊起m=2 t的重物开始时起重杆的重物开始时起重杆OA与竖直方向成与竖直方向成60角,当转到杆与竖直成角,当转到杆与竖直成30角时,求起重机的沿水
19、平方向的位移设起重机质量为角时,求起重机的沿水平方向的位移设起重机质量为M=20 t,起重杆长,起重杆长l=8 m,水的阻力与杆重均不计,水的阻力与杆重均不计 专题专题9-例例5水平方向动量守恒,设右为正,起重机位移水平方向动量守恒,设右为正,起重机位移x重物对起重机水重物对起重机水平位移平位移设右为正,梯形木块位移设右为正,梯形木块位移x,系统水平方向动量守恒:系统水平方向动量守恒:如如图图所所示示,三三个个重重物物m1=20 kg,m2=15 kg,m3=10 kg,直直角角梯梯形形物物块块M=100 kg三三重重物物由由一一绕绕过过两两个个定定滑滑轮轮P和和Q的的绳绳子子相相连连当当重重
20、物物m1下下降降时时,重重物物m2在在梯梯形形物物块块的的上上面面向向右右移移动动,而而重重物物m3则则沿沿斜斜面面上上升升如如忽忽略略一一切切摩摩擦擦和和绳绳子子质质量量,求求当当重重物物m1下下降降1m时,梯形物块的位移时,梯形物块的位移 m1m2m3MPQM典型情景:典型情景:vmmvmmMvMMmvmMFmFvm -“一对力的功一对力的功”用其中一个力的大小与两物体相对位移的乘积来计算用其中一个力的大小与两物体相对位移的乘积来计算 模型特征:模型特征:由两个物体组成的系统,所受合外力为零而相互作用力为一对恒力规律种种:规律种种:动力学规律动力学规律 两物体的加速度大小与质量成反比两物体
21、的加速度大小与质量成反比运动学规律运动学规律 两个做匀变速运动物体的追及问题或相对运动问题两个做匀变速运动物体的追及问题或相对运动问题动量规律动量规律 系统的总动量守恒系统的总动量守恒能量规律能量规律 力对力对“子弹子弹”做的功等于做的功等于“子弹子弹”动能的增量:动能的增量:力对力对“木块木块”做功等于做功等于“木块木块”动能增量:动能增量:一对力的功等于系统动能增量:一对力的功等于系统动能增量:图象图象1 1 图象图象2 2图象描述图象描述“子弹”穿出”木块”“子弹”迎击”木块”未穿出vmvmtvMtdtv0t0tv0vmvMd图象描述图象描述“子弹”未穿出”木块”“子弹”与”木块”间作用
22、一对恒力vmdtv0t0tv0vmsmt0 v 如图所示,长为如图所示,长为L的木板的木板A右边固定着一个挡板,包括挡板在内的总质右边固定着一个挡板,包括挡板在内的总质量为量为1.5M,静止在光滑水平面上,有一质量为,静止在光滑水平面上,有一质量为M的小木块的小木块B,从木板,从木板A的左端开始的左端开始以初速度以初速度v0在木板在木板A上滑动,小木块上滑动,小木块B与木板与木板A间的摩擦因数为间的摩擦因数为小木块小木块B滑到木板滑到木板A 的右端与挡板发生碰撞已知碰撞过程时间极短,且碰后木板的右端与挡板发生碰撞已知碰撞过程时间极短,且碰后木板B恰好滑到木板恰好滑到木板A的的左端就停止滑动求:
23、左端就停止滑动求:若若 在小木块在小木块B与挡板碰撞后的运动过程中,摩擦力与挡板碰撞后的运动过程中,摩擦力对木板对木板A做正功还是做负功?做多少功?做正功还是做负功?做多少功?讨论木板讨论木板A和小木块和小木块B在整个运动过程中,在整个运动过程中,是否有可能在某段时间里相对地面运动方向是向左的?如果不可能,说明理由;如是否有可能在某段时间里相对地面运动方向是向左的?如果不可能,说明理由;如果可能,求出能向左滑动,又能保证木板果可能,求出能向左滑动,又能保证木板A和小木块和小木块B刚好不脱离的条件刚好不脱离的条件专题专题9-例例6 这是典型的这是典型的“子弹打木块子弹打木块”模型:模型:A、B间
24、相互作用着一间相互作用着一对等大、反向的摩擦力对等大、反向的摩擦力Ff=Mg而系统不受外力,它的变化在而系统不受外力,它的变化在于过程中发生一系统内部瞬时的相互碰撞小木块于过程中发生一系统内部瞬时的相互碰撞小木块B与挡板碰与挡板碰撞前、后及整个过程均遵从动量守恒规律;撞前、后及整个过程均遵从动量守恒规律;A、B两者加速度两者加速度大小与质量成反比;碰撞前木块大小与质量成反比;碰撞前木块“追追”木板,碰撞后则成木板木板,碰撞后则成木板“追追”木块木块.LBAv0系统运动v-t图t1t1+t2v0BALABL由系统全过程动量守恒由系统全过程动量守恒续解续解由图象求出由图象求出B与挡板碰后时间与挡板
25、碰后时间t2:查阅查阅碰后板碰后板A的速度的速度VA:v-t图图由动能定理由动能定理,摩擦力在碰后过程中对木板摩擦力在碰后过程中对木板A做的功做的功B能有向左运动的阶段而又刚好不落下能有向左运动的阶段而又刚好不落下A板应满足两个条件:板应满足两个条件:一是B与挡板碰后B速度为负:一是一对摩擦力在2L的相对位移上做的功不大于系统动能的增量,即:木块木块B可在与挡板碰撞后的一段时间内相对可在与挡板碰撞后的一段时间内相对地面向左运动并刚好相对静止在板地面向左运动并刚好相对静止在板A的左端的左端 推证两光滑物体发生弹性碰撞时,接近速度与分离速推证两光滑物体发生弹性碰撞时,接近速度与分离速度大小相等,方
26、向遵守度大小相等,方向遵守“光反射定律光反射定律”,即入射角等于反射角,即入射角等于反射角.专题专题9-例例7 如图,设小球与平板均光滑,小球与平板发生完全弹性碰撞,如图,设小球与平板均光滑,小球与平板发生完全弹性碰撞,木板质量为木板质量为M,小球质量为,小球质量为m,沿板的法向与切向建立坐标系,沿板的法向与切向建立坐标系,设碰撞前,板的速度为设碰撞前,板的速度为V,球的速度为,球的速度为v,碰撞后,分别变为,碰撞后,分别变为xy0Vv两者发生完全弹性碰撞,系统同时满足动量与动能守恒:两式相除两式相除球与木板的接近速度与分离速度大小相等球与木板的接近速度与分离速度大小相等 方向方向:弹弓效应弹
27、弓效应 如图,质量为如图,质量为m的小球放在质量为的小球放在质量为M的大球顶上,从高的大球顶上,从高h处释放,紧挨着处释放,紧挨着落下,撞击地面后跳起所有的碰撞都是完全弹性碰撞,且都发生在竖直轴上落下,撞击地面后跳起所有的碰撞都是完全弹性碰撞,且都发生在竖直轴上小球弹起可能达到的最大高度?小球弹起可能达到的最大高度?如在碰撞后,物体如在碰撞后,物体M处于平衡,则质量之比处于平衡,则质量之比应为多少?在此情况下,物体应为多少?在此情况下,物体m升起的高度为多少?升起的高度为多少?专题专题9-例例8大球刚触地时两球速度v均为,大球与地完全弹性碰撞,速度变为相对大球相对大球,小球以小球以2v速度向下
28、接近大球速度向下接近大球,完完全弹性碰撞后以全弹性碰撞后以2v速度向上速度向上与大球分离与大球分离!小球与大球碰撞后对地速度变为对小球对小球,由机械能守恒由机械能守恒若碰后大球处于平衡,则 如图所示,如图所示,AB部分是一光滑水平面,部分是一光滑水平面,BC部分是倾角为部分是倾角为(90)的光滑斜面()的光滑斜面(90时为竖直面)一条伸直的、时为竖直面)一条伸直的、长为长为l的匀质光滑柔的匀质光滑柔软细绳绝大部分与软细绳绝大部分与棱垂直地静止在棱垂直地静止在AB面上,只是其右端有极小部分处在面上,只是其右端有极小部分处在BC面上,面上,于是绳便开始沿于是绳便开始沿ABC下滑下滑.取取90,试定
29、性分析细绳能否一直贴着,试定性分析细绳能否一直贴着ABC下滑直下滑直至绳左端到达至绳左端到达?事实上,对所给的角度范围(事实上,对所给的角度范围(90),),细绳左端到细绳左端到棱尚有一定距离时,细绳便会出现脱离棱尚有一定距离时,细绳便会出现脱离ABC约束(即不全部紧贴约束(即不全部紧贴ABC)的现象)的现象试求该距离试求该距离xABC 9090 x 细绳贴着细绳贴着ABC下滑,到达下滑,到达B处的绳元水平速度处的绳元水平速度越来越大,这需要有更大的向左的力使绳元的水越来越大,这需要有更大的向左的力使绳元的水平动量减为零,但事实上尚在水平面上的绳段对平动量减为零,但事实上尚在水平面上的绳段对到
30、达到达B处的绳元向左的拉力由力的加速度分配法处的绳元向左的拉力由力的加速度分配法 可知随着下落段可知随着下落段x增大增大,FT先增大后减小先增大后减小!细绳做不到一直贴着细绳做不到一直贴着ABC下滑直至绳左端到达下滑直至绳左端到达BC续解续解ABC 设有设有x长的一段绳滑至斜面时绳与棱长的一段绳滑至斜面时绳与棱B B间恰无作用,此时绳的间恰无作用,此时绳的速度设为速度设为v,则由机械能守恒:,则由机械能守恒:xvvFTmgFT考察处在B处的微元绳段m受力:微元段微元段 m在水平冲量作用下水平动量由在水平冲量作用下水平动量由 mv变为变为 mvcos 由动量定理 其中 即细绳左端到即细绳左端到B
31、棱尚有一半绳长的距离时,细棱尚有一半绳长的距离时,细绳便会出现不全部紧贴绳便会出现不全部紧贴ABC的现象的现象!质量为质量为0.1 kg的皮球,从某一高度自由下落到水平地板上,皮的皮球,从某一高度自由下落到水平地板上,皮球与地板碰一次,上升的高度总等于前一次的球与地板碰一次,上升的高度总等于前一次的0.64倍如果某一次皮球上升最大高倍如果某一次皮球上升最大高度为度为1.25 m时拍一下皮球,给它一个竖直向下的冲力,作用时间为时拍一下皮球,给它一个竖直向下的冲力,作用时间为0.1 s,使皮球使皮球与地板碰后跳回前一次高度求这个冲力多大?与地板碰后跳回前一次高度求这个冲力多大?球与地碰撞恢复系数球
32、与地碰撞恢复系数 某一次,皮球获得的初动能某一次,皮球获得的初动能 落地时速度由落地时速度由 起跳时速度起跳时速度 代入数据得代入数据得 一袋面粉沿着与水平面倾斜成角度一袋面粉沿着与水平面倾斜成角度60的光滑斜的光滑斜板上,从高板上,从高H处无初速度地滑下来,落到水平地板上袋与地板之间处无初速度地滑下来,落到水平地板上袋与地板之间的动摩擦因数的动摩擦因数0.7,试问袋停在何处?如果,试问袋停在何处?如果H2 m,45,=0.5,袋又将停在何处?,袋又将停在何处?本题要特别关注从斜板到水平地板的拐点,袋的本题要特别关注从斜板到水平地板的拐点,袋的动量的变化及其所受的摩擦力与支持力冲量情况动量的变
33、化及其所受的摩擦力与支持力冲量情况 在在=0.7 =60情况下情况下p到水平板时两个方向动量减为零所需冲量可由动量定理确定:即水平分量先减为零!袋就停在斜面底端袋就停在斜面底端 在在=0.5 =45情况下情况下竖直分量先减为零!续解续解竖直分量减为竖直分量减为0 0时时,水平动量设为水平动量设为px,则由动量定理则由动量定理袋将离开斜板底端,在水平地板滑行袋将离开斜板底端,在水平地板滑行S后停止,由动能定理后停止,由动能定理 袋将停在水平地板上距斜板底端袋将停在水平地板上距斜板底端0.5m处处 一球自高度为一球自高度为h的塔顶自由下落,同时,另一完全相的塔顶自由下落,同时,另一完全相同的球以速
34、度同的球以速度 自塔底竖直上抛,并与下落的球发生正碰自塔底竖直上抛,并与下落的球发生正碰若两球碰撞的恢复系数为若两球碰撞的恢复系数为e,求下落的球将回跃到距塔顶多高处?,求下落的球将回跃到距塔顶多高处?两球相对速度(亦即接近速度)两球相对速度(亦即接近速度)到两球相遇历时此时两球速率相同此时两球速率相同 上球下落了上球下落了由牛顿碰撞定律由牛顿碰撞定律 碰后两球分离速度碰后两球分离速度 两球完全相同两球完全相同设回跳高度距塔顶H,由机械能守恒 如图所示,定滑轮两边分别悬挂质量是如图所示,定滑轮两边分别悬挂质量是2m和和m的重物的重物A和和B,从静止开始运动从静止开始运动3秒后,秒后,A将触地将
35、触地(无反跳无反跳)试求从试求从A第一次触地后:第一次触地后:经过多少时经过多少时间,间,A将第二次触地?将第二次触地?经过多少时间系统停止运动?经过多少时间系统停止运动?整个系统一起运动时整个系统一起运动时初时质量为初时质量为2m的物块的物块A离地高度离地高度 A A着地后,绳松,着地后,绳松,B B以初速度以初速度 v1=at1=10m/s竖直上抛竖直上抛经经落回原处并将绳拉紧落回原处并将绳拉紧!此瞬时此瞬时A、B相互作用,相互作用,B被拉离地面,由动量守恒被拉离地面,由动量守恒 2m 此后,两者以此后,两者以v2为初速度、为初速度、a=g/3做匀变速运动(先反时针匀减做匀变速运动(先反时
36、针匀减速、后顺时针匀加速),回到初位置即速、后顺时针匀加速),回到初位置即A第二次触地须经时间第二次触地须经时间m则则A的第一、二次着地总共相隔的第一、二次着地总共相隔 续解续解第二次着地时两物块的速度第二次着地时两物块的速度A A再次被拉离地面时两物块的速度由再次被拉离地面时两物块的速度由 A A着地后,绳松,着地后,绳松,B B以初速度以初速度 v1/3竖直上抛竖直上抛,经经落回原处落回原处并将绳拉紧并将绳拉紧!此后,两者以此后,两者以v3为初速度、为初速度、a=g/3做匀变速运动(先反时针匀减做匀变速运动(先反时针匀减速、后顺时针匀加速),速、后顺时针匀加速),A第三次触地须经时间第三次
37、触地须经时间则则A的第二、三次着地总共相隔的第二、三次着地总共相隔 以此类推,到第n次着地时 自开始运动到最终停止共用查阅查阅 如图所示,质量为如图所示,质量为m1、m2的物体,通过轻绳挂在双斜面的两端的物体,通过轻绳挂在双斜面的两端斜面的质量为斜面的质量为m,与水平面的夹角为,与水平面的夹角为1和和2,整个系统起初静止,求放开后斜面,整个系统起初静止,求放开后斜面的加速度和物体的加速度斜面保持静止的条件是什么?忽略所有摩擦的加速度和物体的加速度斜面保持静止的条件是什么?忽略所有摩擦 m1m12m2 设斜面加速度为a,而物体对斜面的加速度为a0 aa0a2a0a1Xa 在所设坐标方向上在所设坐
38、标方向上a由系统水平方向动量守恒 对m1、m2分别列出动力学方程m1aTm1gN1m2aTm2gN2由上三式解得续解续解当a=0,即 斜面静止!斜面静止!查阅查阅 小滑块小滑块A A位于光滑的水平桌面上,位于光滑的水平桌面上,小滑块小滑块B处在位于桌面上的处在位于桌面上的光滑小槽中,两滑块的质量都是光滑小槽中,两滑块的质量都是m,并用长,并用长L、不可伸长、无弹性的轻绳相连,如、不可伸长、无弹性的轻绳相连,如图开始时图开始时A、B间的距离为间的距离为L/2,A、B间连线与小槽垂直今给滑块间连线与小槽垂直今给滑块A一冲击,使一冲击,使其获得平行于槽的速度其获得平行于槽的速度v0,求滑块,求滑块B
39、开始运动时的速度开始运动时的速度 v0BA当轻绳刚拉直时滑块当轻绳刚拉直时滑块A速度由速度由v0变为变为vA,速度增量沿绳方向,速度增量沿绳方向,滑块滑块B速度设为速度设为vB,沿槽;各速,沿槽;各速度矢量间关系如图度矢量间关系如图,其中其中vn表示表示A对对B的转动速度的转动速度 vnvAvBvABvB沿槽方向系统动量守恒:又由图示矢量几何关系有:v0 如图所示,将一边长为如图所示,将一边长为l、质量为、质量为M的正方形平板放在劲度系数的正方形平板放在劲度系数为为k的轻弹簧上,另有一质量为的轻弹簧上,另有一质量为m(mM)的小球放在一光滑桌面上,桌面离平)的小球放在一光滑桌面上,桌面离平板的
40、高度为板的高度为h如果将小球以水平速度如果将小球以水平速度v0抛出桌面后恰与平板在中点抛出桌面后恰与平板在中点O处做完全弹处做完全弹性碰撞,求性碰撞,求:小球的水平初速度小球的水平初速度v0应是多大?应是多大?弹簧的最大压缩量是多大?弹簧的最大压缩量是多大?Mkv0Omh设球对板的入射速度设球对板的入射速度v方向与竖直成方向与竖直成,大小即平抛运动末速度,大小即平抛运动末速度 v平抛运动初速度平抛运动初速度 根据弹性碰撞性质,设球与板碰后速度变为根据弹性碰撞性质,设球与板碰后速度变为v,板速度为,板速度为V ,球离开板时对板的速度大小为,球离开板时对板的速度大小为v,方向遵守反射定律,矢量关系
41、如图示:,方向遵守反射定律,矢量关系如图示:vV由图示关系 由动能守恒 此后板在运动中机械能守恒,可得板向下运动 则弹簧总压缩量为则弹簧总压缩量为 物体以速度物体以速度v0=10m/s从地面竖直上抛,落地时速度从地面竖直上抛,落地时速度vt=9 m/s,若运动中所受阻力与速度成正比,即,若运动中所受阻力与速度成正比,即f=kmv,m为物体的质为物体的质量,求物体在空中运动时间及系数量,求物体在空中运动时间及系数k 本题通过元过程的动量定理本题通过元过程的动量定理,用微元法求得终解用微元法求得终解!本题研究过程中有重力冲量与阻力冲量本题研究过程中有重力冲量与阻力冲量,其中阻其中阻力冲量为一随时间按指数规律变化的力力冲量为一随时间按指数规律变化的力!设上升时间为T,取上升过程中的某一元过程:该过程小球上升了T/n(n)时间,速度从vi减少为vi+1,各元过程中的阻力可视为不变为合外力根据动量定理,对该元过程有即对该式变形有 在各相同的上升高时间在各相同的上升高时间T/n微元中,合外力大小成等比数微元中,合外力大小成等比数列递减、因而动量的增量是成等比数列递减的,其公比为列递减、因而动量的增量是成等比数列递减的,其公比为续解续解下落过程的动量定理表达为:下落高度下落高度查阅查阅上、下落过程的动量定理表达式相加为:上、下落过程的时间表达式相加为: