计量经济学论文(eviews分析)-房价的计量经济分析.docx

上传人:暗伤 文档编号:66088952 上传时间:2022-12-13 格式:DOCX 页数:8 大小:41.95KB
返回 下载 相关 举报
计量经济学论文(eviews分析)-房价的计量经济分析.docx_第1页
第1页 / 共8页
计量经济学论文(eviews分析)-房价的计量经济分析.docx_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《计量经济学论文(eviews分析)-房价的计量经济分析.docx》由会员分享,可在线阅读,更多相关《计量经济学论文(eviews分析)-房价的计量经济分析.docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、.最好的沉淀整理房价的计量经济分析引言:近改革开放 20 多年来,从来没有哪一个行业像房地产业这样盛产亿万富翁,各种富豪排行榜上,房地产富豪连年占据半壁江山;“中国十大暴利行业”中,房地产业每年都是 “第一名”。是什么造就了这样的状况。房地产的问题,在开发商,政府,购房者三者来看, 就是一场完完全全的博弈。而这场博弈的焦点则是房价问题。如果说开发商与政府之间的博 弈是围绕“土地”这个关键词,那么整个房地产市场则在价格上开展了新一轮的对峙。先是 开发商与购房者在房价涨跌上僵持不下;再有开发商与政府之间的土地成本论;最后则是关于房地产是否归为暴利行业的争执,“价格”成了市场关注的焦点。而对于房价的

2、构成因素,至今仍然是不透明的。公布房价成本成为另政府极为头疼的一件事。房价成本是一个非常复 杂的集合体,并且项目间差异性较大,同时还有软资产、品牌等组成部分,特别是现在的商 品房,追求品质、功能完善以及个性化成本构成越来越难衡量。写作目的:通过对一系列影响房价的基本因素的分析,了解对其主要因素和次要因素。并对这些因素进行统计推断和经济意义上的检验。选择拟和效果最好的最为结论。在一定层面上分析房地产如此暴利的因素。当然笔者的能力有限,并不能全面的分析这一问题。仅仅就几个因素进行分析。写作方法:理论分析及计量分析方法,将会用到Eviews 软件进行帮助分析。关键词:房价成本 计量假设检验 最小二乘

3、法 拟合优度现在我们以2003年的数据,选取30个省市的数据为例进行分析。在Eviews软件中选择建立截面数据。现在我们以2003年的数据,选取31个省市的数据为例进行分析。令Y=各地区建筑业总产值。(万元)X1=各地区房屋竣工面积。(万平方米)X2=各地区建筑业企业从业人员。(人)X3=各地区建筑业劳动生产率。(元/人)X4=各地区人均住宅面积。(平方米)X5= 各地区人均可支配收入。(元)数据如下:YX1X3X2X4X5126985214254.800569767.0129961.024.7714013882.625208402.1465.800238957.0147063.023.095

4、7010312.917799313.4748.300989317.070048.0023.167107239.0605401279.1313.300591276.089151.0022.996807005.0302576575.1450.700265953.061074.0020.053107012.900101707943957.100966790.082496.0020.235107240.5803469281.1626.800303837.077486.0020.705907005.1704401878.2181.300441518.068033.0020.492006678.90011

5、9580343609.200505185.0153910.029.3453014867.492794935417730.002727006.100569.024.435309262.4603127277916183.902429352.127430.031.0233013179.536227073.4017.600910691.066407.0020.754806778.0305493441.2952.100553611.0108288.030.298709999.5403593356.2750.900574705.070826.0022.619806901.420148136189139.8

6、002072530.60728.0024.480808399.9106345217.3433.600932901.066056.0020.200906926.1208729958.4840.8001048763.81761.0022.902807321.9808188402.4969.7001119106.74553.0024.425807674.200151632428105.0001492820.101932.024.9328012380.432818466.1721.600353700.077472.0024.173207785.040394053.0121.500061210.0055

7、361.0023.432007259.2505862095.4939.600817997.069432.0025.724408093.670122533748784.6002070534.59748.0026.358507041.8702122907.980.3000293310.072152.0018.194306569.2303967957.2248.700522470.069238.0024.929407643.570293427.0121.300036593.0073205.0019.929908765.4504404362.1580.000410311.093212.0021.750

8、506806.3502236860.1327.200449409.046857.0021.113806657.240747325.0242.9000101501.061046.0019.105506745.3201080546.578.700088225.0061459.0022.255006530.4803196774.1450.800203375.095835.0020.781107173.540做多重共线性检验:引入的变量太多,可能存在变量间的共线性,影响方程的估计。首先进行做多重共线性检验可以减少变量使后面的分析变得简洁。X1X2X3X4X5Y0.96087099090.2713751

9、9270.53869727900.41830680020.9614738426X1107446607756904195329080420.96087099090.12502937500.47788589150.27985062330.8986725515X207446197319187344358116060.27137519270.12502937500.54088095990.83624084890.4677103837X360775973191699264241600920.53869727900.47788589150.54088095990.68651280850.589777148

10、8X46904118736992610774261270.41830680020.27985062330.83624084890.68651280850.5898233852X5953294435842410774162140.96147384260.89867255150.46771038370.58977714880.5898233852Y0804211606600922612762141可以看出有多重共线性。采取逐步回归法:第一次回归,我们可以根据T 检验值和可决系数看出:X1 的效果最好:Dependent Variable: Y Method: Least SquaresDate:

11、12/06/10Time: 17:37 Sample (adjusted): 1 31Included observations: 31 after adjustmentsVariableX1 CCoefficient1651.403903234.0Std. Error87.67703502408.2t-Statistic18.835081.797809Prob.0.00000.0826R-squared0.924432Mean dependent var7446408.Adjusted R-squared0.921826S.D. dependent var7227629.S.E. of re

12、gression2020815.Akaike info criterion31.93824Sum squared resid1.18E+14Schwarz criterion32.03076Log likelihood-493.0427F-statistic354.7601Durbin-Watson stat1.930762Prob(F-statistic)0.000000而 X1 于 X2 存在严重自相关,所以引入第二个变量时将X2 排除。通过比较发现引入X3 时, 拟合优度最大,所以加入X3Dependent Variable: Y Method: Least SquaresDate: 1

13、2/06/10Time: 17:40 Sample (adjusted): 1 31Included observations: 31 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.X11547.35457.8319726.756040.0000X360.575779.1368996.6297950.0000C-3711880.765709.2-4.8476370.0000R-squared0.970594Mean dependent var7446408.Adjusted R-squared0.968493S.D.

14、 dependent var7227629.S.E. of regression1282914.Akaike info criterion31.05893Sum squared resid4.61E+13Schwarz criterion31.19771Log likelihood-478.4134F-statistic462.0886Durbin-Watson stat2.098685Prob(F-statistic)0.000000X3 与X5 也存在严重共线性,在引入第三个变量时同时排除X5,那只能引入X4 了Dependent Variable: Y Method: Least Squ

15、aresDate: 12/06/10Time: 17:47 Sample (adjusted): 1 31Included observations: 31 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.X11569.18666.7446723.510290.0000X364.0494510.562586.0638100.0000X4-69455.16102797.7-0.6756490.5050C-2476469.1985261.-1.2474280.2230R-squared0.971083Mean depend

16、ent var7446408.Adjusted R-squared0.967870S.D. dependent var7227629.S.E. of regression1295550.Akaike info criterion31.10668Sum squared resid4.53E+13Schwarz criterion31.29171Log likelihood-478.1536F-statistic302.2316Durbin-Watson stat2.298423Prob(F-statistic)0.000000但是引入后通过 T 检验 X4 不显著,同时常数项 C 也变得不显著,

17、且拟合度没有显著提高。所以剔除X4。通过该检验最终模型为:Y = 1547.354325*X1 + 60.57576644*X3 - 3711880.158T=26.756046.629795-4.847637F-statistic354.7601R-squared0.970594Durbin-Watson stat2.098685以上指标都显示拟合得很好。异方差检验White Heteroskedasticity Test:F-statistic1.742532Probability0.161697Obs*R-squared8.011602Probability0.155597Test Eq

18、uation:Dependent Variable: RESID2 Method: Least SquaresDate: 12/06/10Time: 18:05 Sample: 1 31Included observations: 31VariableCoefficientStd. Errort-StatisticProb.C-3.19E+124.46E+12-0.7158550.4807X11.15E+083.54E+080.3249150.7479X123913.00420466.630.1911890.8499X1*X3-756.30894598.986-0.1644510.8707X3

19、69425884952903000.7285720.4730X32-184.1939462.0769-0.3986220.6936R-squared0.258439Mean dependent var1.49E+12Adjusted R-squaredS.E. of regression Sum squared resid Log likelihood Durbin-Watson stat0.110127 S.D. dependent var 1.92E+12 Akaike info criterion 9.25E+25 Schwarz criterion-917.4929 F-statist

20、ic2.029951 Prob(F-statistic)2.04E+1259.5801959.857741.7425320.161697从结果来看应该勉强是不存在异方差的,但是同方差的概率有点小,不能让人信服。而通过残差 图发现残差没有很明显的波动、X-Y 的图也较符合线性关系即模型设定没多大问题、且从White Heteroskedasticity Test 中各变量的系数也十分不显著不能判别残差是否与解释变量有关。没办法,只能用加权最小二乘法进行修正。异方差修正-加权最小二乘法Dependent Variable: Y Method: Least SquaresDate: 12/06/10

21、Time: 18:13 Sample (adjusted): 1 31Included observations: 31 after adjustmentsWeighting series: 1/ABS(RESID)VariableCoefficientStd. Errort-StatisticProb.X11543.8124.266721361.82620.0000X360.882210.92521265.803540.0000C-3721097.59118.40-62.943140.0000Weighted StatisticsR-squared0.999999Mean dependent

22、 var7466651.Adjusted R-squared0.999999S.D. dependent var34381715S.E. of regression29817.20Akaike info criterion23.53532Sum squared resid2.49E+10Schwarz criterion23.67410Log likelihood-361.7975F-statistic310479.3Durbin-Watson stat2.158638Prob(F-statistic)0.000000Unweighted StatisticsR-squared0.970589

23、Mean dependent var7446408.Adjusted R-squared0.968489S.D. dependent var7227629.S.E. of regression1283009.Sum squared resid4.61E+13Durbin-Watson stat2.099900通过修正以后拟合度有所提高,且通过再次异方差检验通过了。自相关检验Breusch-Godfrey Serial Correlation LM Test:Obs*R-squared0.505922Probability0.776498Test Equation:Dependent Varia

24、ble: RESID Method: Least SquaresDate: 12/06/10Time: 18:26Presample missing value lagged residuals set to zero.VariableCoefficientStd. Errort-StatisticProb.X1-6.77803562.81436-0.1079060.9149X31.2596669.7075420.1297620.8978C-73457.01800910.8-0.0917170.9276RESID(-1)-0.1250060.210750-0.5931470.5582RESID

25、(-2)-0.0678210.201592-0.3364250.7393R-squared0.016320Mean dependent var-2178.743Adjusted R-squared-0.135015S.D. dependent var1239503.S.E. of regression1320530.Akaike info criterion31.17165Sum squared resid4.53E+13Schwarz criterion31.40294Log likelihood-478.1606F-statistic0.107840Durbin-Watson stat1.

26、862550Prob(F-statistic)0.978723从结果看自相关检验也通过,模型不存在自相关。正态性检验由检验知残差符合正态性假设。稳定性检验由图知模型十分稳定,具有很好的预测能力。综上最后的出模型为Y = 1543.81157*X1 + 60.8822121*X3 - 3721097.247结论:我们总认为房产总价值与许多成分有关,其实在最后我们看到并不是这样。但现实中房价成本具有相当大的难度。不管是资金成本很难简单地以招拍挂价格进行测算,还是融资成本比较难核算。而且房地产的利润要以综合成本衡量。种种原因构成了房价成本确定的难度。而房产行业的暴利,开发商的暴利是来源于开发商的阶层优越感和特殊占有地位,而与之相对的是老百姓的阶层卑微感和相对剥削感。房地产业的暴利如果继续维持,考验的不仅是中国经济的稳定,更是老百姓忍耐的限度。而且这种房产的暴利行为导致了从2003年10 月开始的通货膨胀,并造成了中国越来越大的金融风险。我国房价的公开将会采取怎么样的方式,笔者将和大家一起拭目以待。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁