弹性力学总结与复习.ppt

上传人:wuy****n92 文档编号:66035398 上传时间:2022-12-11 格式:PPT 页数:36 大小:1.17MB
返回 下载 相关 举报
弹性力学总结与复习.ppt_第1页
第1页 / 共36页
弹性力学总结与复习.ppt_第2页
第2页 / 共36页
点击查看更多>>
资源描述

《弹性力学总结与复习.ppt》由会员分享,可在线阅读,更多相关《弹性力学总结与复习.ppt(36页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、弹性力学课程总结与复习弹性力学课程总结与复习一、弹性力学问题研究的基本框架:一、弹性力学问题研究的基本框架:一、弹性力学问题研究的基本框架:一、弹性力学问题研究的基本框架:弹弹性性力力学学问问题题基本假设与基本量基本假设与基本量基本假设与基本量基本假设与基本量5个基本假设;个基本假设;15个基本量:个基本量:基本原理基本原理平衡原理平衡原理能量原理能量原理(单元体)(单元体)(整体)(整体)基本方程基本方程控制微分方程控制微分方程(15个)个)边界条件边界条件(6个)个)平衡微分方程(平衡微分方程(3个):个):几何方程(几何方程(6个):个):物理方程(物理方程(6个):个):应力边界条件(

2、应力边界条件(3个):个):位移边界条件(位移边界条件(3个)个):数学上数学上构成偏微分方程的构成偏微分方程的定解问题定解问题求解方法求解方法求解方法求解方法函数解函数解精确解;精确解;近似解;近似解;(如:基于能量原理的解)(如:基于能量原理的解)数值解数值解(如:有限差分法、有限单元法等)(如:有限差分法、有限单元法等)实验方法实验方法二、弹性力学平面问题的求解二、弹性力学平面问题的求解二、弹性力学平面问题的求解二、弹性力学平面问题的求解(1)按)按未知量未知量的性质分:的性质分:按位移求解;按位移求解;按应力求解;按应力求解;(2)按采用的)按采用的坐标系坐标系分:分:直角坐标解答;直

3、角坐标解答;极坐标解答;极坐标解答;(3)按采用的)按采用的函数类型函数类型分:分:级数解;级数解;初等函数解;初等函数解;复变函数解;复变函数解;1 1.平面问题的求解方法平面问题的求解方法平面问题的求解方法平面问题的求解方法逆解法;逆解法;半逆解法;半逆解法;2.2.平面问题求解的基本方程平面问题求解的基本方程平面问题求解的基本方程平面问题求解的基本方程(1)平衡方程)平衡方程(2-2)(2)相容方程(形变协调方程)相容方程(形变协调方程)(2-23)(3)边界条件:)边界条件:(2-18)(平面应力情形)(平面应力情形)(1)对应力边界问题,且为)对应力边界问题,且为单连单连通问题通问题

4、,满足上述方程的解,满足上述方程的解是唯一正确解。是唯一正确解。(2)对)对多连通问题多连通问题,满足上述方,满足上述方程外,还需满足程外,还需满足位移单值条位移单值条件件,才是唯一正确解。,才是唯一正确解。说明:说明:3.常体力下平面问题求解的基本方程与步骤:常体力下平面问题求解的基本方程与步骤:(1)(2-27)(2)然后将然后将 代入式(代入式(2-26)求出应力分量:)求出应力分量:先由方程(先由方程(2-27)求出应力函数:)求出应力函数:(2-26)(3)再让再让 满足应力边界条件和位移单值条件(多连体问题)。满足应力边界条件和位移单值条件(多连体问题)。(2-18)(2-17)直

5、角坐标下直角坐标下(1)由问题的条件求出满足式(由问题的条件求出满足式(46)的应力函数)的应力函数(46)(2)由式(由式(45)求出相应的应力分量:)求出相应的应力分量:(45)(3)将上述应力分量将上述应力分量满足问题的边界条件:满足问题的边界条件:位移边界条件:位移边界条件:应力边界条件:应力边界条件:为边界上已知位移,为边界上已知位移,为边界上已知的面力分量。为边界上已知的面力分量。(位移单值条件)(位移单值条件)极坐标下极坐标下4.平面问题平面问题Airy应力函数应力函数 的选取:的选取:直角坐标下直角坐标下xyOblx习题:习题:3-1,3 2,3 3,3-4xyO极坐标下极坐标

6、下(1)轴对称问题轴对称问题(411)应力函数应力函数应力分量应力分量(412)位移分量位移分量(4-13)式中:式中:A、B、C、H、I、K 由应力和位移边界条件确定。由应力和位移边界条件确定。(2)圆孔的孔边应力集中问题圆孔的孔边应力集中问题原问题的转换:原问题的转换:问题问题1baba问题问题2轴对称问题轴对称问题非轴对称问题非轴对称问题(3)楔形体问题楔形体问题 由由因次法因次法确定确定 应力函数的分离变量形式应力函数的分离变量形式(1)楔顶受集中力偶楔顶受集中力偶xyOPxyOM(2)楔顶受集中力楔顶受集中力(3)楔形体一侧受分布力楔形体一侧受分布力(4)曲梁问题曲梁问题其中:其中:

7、q 为曲梁圆周边界上的分布载荷。为曲梁圆周边界上的分布载荷。M,Q分别为梁截面上弯矩与剪力。分别为梁截面上弯矩与剪力。结合应力分量与应力函数的关系确定结合应力分量与应力函数的关系确定 应力函数:应力函数:(5)半平面问题半平面问题PxyOxyOMxyOxyOaaxyO利用叠加法求解利用叠加法求解练习练习:(1)试用边界条件确定,当图示变截面杆件受拉伸时,试用边界条件确定,当图示变截面杆件受拉伸时,在靠杆边的外表面处,横截面上的正应力在靠杆边的外表面处,横截面上的正应力 与剪应力与剪应力 间的关系。设杆的横截面形状为狭间的关系。设杆的横截面形状为狭长矩形,板厚为一个单位。长矩形,板厚为一个单位。

8、(2)z 方向(垂直于板面)很长的直角六面体,上边界方向(垂直于板面)很长的直角六面体,上边界受均匀压力受均匀压力 p 作用,底部放置在绝对刚性与光滑的作用,底部放置在绝对刚性与光滑的基础上,如图所示。不计自重,试确定其应力和位基础上,如图所示。不计自重,试确定其应力和位移分量。移分量。(3)有一薄壁圆筒的平均半径为有一薄壁圆筒的平均半径为R,壁厚为,壁厚为 t,两,两端受相等相反的扭矩端受相等相反的扭矩 M 作用。现在圆筒上发作用。现在圆筒上发现半径为现半径为 a 的小圆孔,如图所示,则孔边的的小圆孔,如图所示,则孔边的最大应力如何?最大应力发生在何处?最大应力如何?最大应力发生在何处?(4

9、)已知圆环在已知圆环在 r=a 的内边界上被固定,在的内边界上被固定,在 r=b 的圆周上作用着均匀分布剪应力,如图所示。的圆周上作用着均匀分布剪应力,如图所示。试确定圆环内的应力与位移。试确定圆环内的应力与位移。45四、弹性力学问题求解的能量法四、弹性力学问题求解的能量法四、弹性力学问题求解的能量法四、弹性力学问题求解的能量法1.基本概念与基本量基本概念与基本量(1)形变势能)形变势能U、比能、比能U 1;(2)形变余能)形变余能U*、比余能、比余能U*1;(3)总势能)总势能;(4)总余能)总余能*;各量的计算。各量的计算。2.变分方程与变分原理变分方程与变分原理(1)位移变分方程;位移变

10、分方程;虚功方程;虚功方程;最小势能原理;最小势能原理;伽辽金变分方程;伽辽金变分方程;(2)应力变分方程;应力变分方程;最小余能原理;最小余能原理;3.求解弹性力学问题的变分法求解弹性力学问题的变分法(1)Ritz 法;法;(2)最小势能原理;)最小势能原理;(3)伽辽金法;)伽辽金法;(1)应力变分法;)应力变分法;(2)最小余能原理;)最小余能原理;如何设定位移函数?如何设定位移函数?如何设定应力函数如何设定应力函数?4.弹性力学两个基本定理弹性力学两个基本定理(1)解的唯一性定理;)解的唯一性定理;(2)功的互等定理;)功的互等定理;5.Ritz 法解题步骤:法解题步骤:(1)假设位移

11、函数,使其位移边界条件;)假设位移函数,使其位移边界条件;(2)计算形变势能计算形变势能 U;(3)代入代入Ritz 法方程求解待定系数法方程求解待定系数;(4)回)回代求解位移、应力等。代求解位移、应力等。6.最小势能原理解题步骤:最小势能原理解题步骤:(1)假设位移函数,使其位移边界条件;)假设位移函数,使其位移边界条件;(2)计算系统的总势能计算系统的总势能 ;(3)由最小势能原理:由最小势能原理:=0,确定待定系数;,确定待定系数;(4)回)回代求解位移、应力等。代求解位移、应力等。7.应力变分法解题步骤:应力变分法解题步骤:(1)假设满足应力边界条件的应力函数)假设满足应力边界条件的

12、应力函数 ;(2)计算系统的形变余能)计算系统的形变余能U*;(3)代入应力变分法方程确定待定系数;)代入应力变分法方程确定待定系数;(4)回代求出应力分量。)回代求出应力分量。在没有给定非零位移边界条件时,应力变分法方程:在没有给定非零位移边界条件时,应力变分法方程:五、其它问题五、其它问题五、其它问题五、其它问题(1)一点应力状态分析;)一点应力状态分析;(2)一点应变状态分析;)一点应变状态分析;(3)应力边界条件的列写;)应力边界条件的列写;(圣维南原理的应用)(圣维南原理的应用)(4)张量的基本知识;)张量的基本知识;(弹性力学基本方程的张量表示)(弹性力学基本方程的张量表示)第一章

13、第一章 绪绪 论论(1)弹性力学与材料力学)、结构力学课程的异同。)弹性力学与材料力学)、结构力学课程的异同。(从研究对象、研究内容、研究方法等讨论)(从研究对象、研究内容、研究方法等讨论)(2)弹性力学中应用了哪些基本假定?这些基本假定在建立弹)弹性力学中应用了哪些基本假定?这些基本假定在建立弹性力学基本方程时的作用是什么?举例说明哪些使用这些假定性力学基本方程时的作用是什么?举例说明哪些使用这些假定?(3)弹性力学中应力分量的正负是如何规定的?与材料力学中有何)弹性力学中应力分量的正负是如何规定的?与材料力学中有何不同?不同?第二章第二章 平面问题的基本理论平面问题的基本理论(1)两类平面

14、问题的特点?(几何、受力、应力、应变等)。)两类平面问题的特点?(几何、受力、应力、应变等)。(2)试列出两类平面问题的基本方程,并比较它们的异同。)试列出两类平面问题的基本方程,并比较它们的异同。(3)在建立平面问题基本方程(平衡方程、几何方程)时,作了哪)在建立平面问题基本方程(平衡方程、几何方程)时,作了哪些近似简化处理?其作用是什么?些近似简化处理?其作用是什么?(4)位移分量与应变分量的关系如何?是否有位移就有应变?)位移分量与应变分量的关系如何?是否有位移就有应变?(5)已知位移分量可唯一确定其形变分量,反过来是否也能唯一确)已知位移分量可唯一确定其形变分量,反过来是否也能唯一确定

15、?需要什么条件?定?需要什么条件?(6)已知一点的应力分量,如何求任意斜截面的应力、主应力、主)已知一点的应力分量,如何求任意斜截面的应力、主应力、主方向?方向?(7)什么是线应变(正应变)、剪应变(切应变、角应变)?如何)什么是线应变(正应变)、剪应变(切应变、角应变)?如何由一点应变分量求任意方向的线应变、主应变、主应变方向?由一点应变分量求任意方向的线应变、主应变、主应变方向?(8)平面应力与平面应变问题的物理方程有何关系?)平面应力与平面应变问题的物理方程有何关系?(9)边界条件有哪两类?如何列写?)边界条件有哪两类?如何列写?(10)何为圣维南原理?其要点是什么?圣维南原理的作用是什

16、么?)何为圣维南原理?其要点是什么?圣维南原理的作用是什么?如何利用圣维南原理列写边界条件?如何利用圣维南原理列写边界条件?(11)弹性力学问题为超静定问题,试说明之。)弹性力学问题为超静定问题,试说明之。(12)弹性力学问题按位移求解的基本方程有哪些?)弹性力学问题按位移求解的基本方程有哪些?(13)弹性力学平面问题的变形协调方程有哪些形式?各自的使用条)弹性力学平面问题的变形协调方程有哪些形式?各自的使用条件是什么?件是什么?(14)按应力求解弹性力学问题,为什么除了满足平衡方程、边界条)按应力求解弹性力学问题,为什么除了满足平衡方程、边界条件外,还必须满足变形协调方程(相容方程)?而按位

17、移求解件外,还必须满足变形协调方程(相容方程)?而按位移求解为什么不需要满足变形协调方程?为什么不需要满足变形协调方程?(15)应力分量满足平衡方程、相容方程、边界条件,是否就是问题)应力分量满足平衡方程、相容方程、边界条件,是否就是问题的正确解?为什么?的正确解?为什么?(16)常体力情况下,如何将体力转化为面力?其意义如何?)常体力情况下,如何将体力转化为面力?其意义如何?(17)何为逆解法?何为半逆解法?)何为逆解法?何为半逆解法?(18)Airy应力函数应力函数 在边界上值的物理意义是什么?应力函数在边界上值的物理意义是什么?应力函数 的的导数:导数:在边界上值的物理意义是什么?在边界

18、上值的物理意义是什么?第三章第三章 平面问题的直角坐标解答平面问题的直角坐标解答(1)直角坐标解答适用于什么情况?)直角坐标解答适用于什么情况?(2)应力函数是否是唯一的?它可确定什么程度?)应力函数是否是唯一的?它可确定什么程度?(3)用应力函数法求解弹性力学问题的基本步骤?)用应力函数法求解弹性力学问题的基本步骤?(4)应力函数与应力分量间的(直角坐标)关系如何?)应力函数与应力分量间的(直角坐标)关系如何?(5)如何利用)如何利用材料力学的结果材料力学的结果推出应力函数推出应力函数 的形式?的形式?(6)如何利用)如何利用量纲分析法量纲分析法(因次分析法)确定(因次分析法)确定楔形体楔形

19、体问题应力函数问题应力函数 的幂次数?的幂次数?xyOblx习题:习题:3-1,3 2,3 3,3-4xyO第四章第四章 平面问题的极坐标解答平面问题的极坐标解答(1)极坐标解答适用的问题结构的几何形状?)极坐标解答适用的问题结构的几何形状?(圆环、圆筒、圆弧形曲杆、楔形体、半无限平面体等)(圆环、圆筒、圆弧形曲杆、楔形体、半无限平面体等)(2)极坐标下弹性力学平面问题的基本方程?)极坐标下弹性力学平面问题的基本方程?(平衡微分方程、几何方程、物理方程、边界条件方程)(平衡微分方程、几何方程、物理方程、边界条件方程)(3)极坐标下弹性力学平面问题的相容方程?)极坐标下弹性力学平面问题的相容方程

20、?(用应变表示的、用应力函数表示的相容方程等)(用应变表示的、用应力函数表示的相容方程等)(4)极坐标下应力分量与应力函数)极坐标下应力分量与应力函数 间关系?间关系?(5)极坐标下弹性力学平面问题)极坐标下弹性力学平面问题边界条件的列写边界条件的列写?(6)极坐标下轴对称问题应力函数)极坐标下轴对称问题应力函数、应力分量、位移分量的特点?、应力分量、位移分量的特点?(7)圆弧形曲梁圆弧形曲梁问题应力函数问题应力函数、应力分量、位移分量的确定?、应力分量、位移分量的确定?(如何利用(如何利用材料力学中曲梁横截面应力材料力学中曲梁横截面应力推出应力函数推出应力函数 的形式?)的形式?)(8)楔形

21、体在)楔形体在力偶力偶、集中力集中力、边界分布力边界分布力作用下,应力函数作用下,应力函数、应、应力分量、位移分量的确定?力分量、位移分量的确定?(9)半无限平面体在边界上作用)半无限平面体在边界上作用力偶力偶、集中力集中力、分布力分布力下,应力函数下,应力函数、应力分量、位移分量的确定?、应力分量、位移分量的确定?(10)圆孔附近应力集中问题应力函数)圆孔附近应力集中问题应力函数、应力分量、位移分量的确定?、应力分量、位移分量的确定?(11)叠加法的应用。)叠加法的应用。非非轴对称问题的求解方法轴对称问题的求解方法半逆解法半逆解法1.圆孔的孔边应力集中问题圆孔的孔边应力集中问题原问题的转换:

22、原问题的转换:问题问题1baba问题问题2轴对称问题轴对称问题非轴对称问题非轴对称问题2.楔形体问题楔形体问题 由由因次法因次法确定确定 应力函数的分离变量形式应力函数的分离变量形式(1)楔顶受集中力偶楔顶受集中力偶xyOPxyOM(2)楔顶受集中力楔顶受集中力(3)楔形体一侧受分布力楔形体一侧受分布力3.曲梁问题曲梁问题其中:其中:q 为曲梁圆周边界上的分布载荷。为曲梁圆周边界上的分布载荷。M,Q分别为梁截面上弯矩与剪力。分别为梁截面上弯矩与剪力。结合应力分量与应力函数的关系确定结合应力分量与应力函数的关系确定 应力函数:应力函数:4.半平面问题半平面问题PxyOxyOMxyOxyOaaxy

23、O叠加法的应用叠加法的应用第七章第七章 平面问题的差分解平面问题的差分解(1)了解差分法的基本思想;)了解差分法的基本思想;(2)了解应力函数差分解中,应力分量的差分公式;应力函数)了解应力函数差分解中,应力分量的差分公式;应力函数的差分方程;的差分方程;(3)了解应力函数差分解求解弹性力学问题的基本方法步骤;)了解应力函数差分解求解弹性力学问题的基本方法步骤;(4)了解位移差分解的基本思路;)了解位移差分解的基本思路;位移差分法求解弹性力学问题的基本方法步骤;位移差分法求解弹性力学问题的基本方法步骤;第十一章第十一章 能量原理与变分法能量原理与变分法(1)形变势能)形变势能U、比能、比能U1

24、的概念及计算;的概念及计算;(在线弹性情况下,比能(在线弹性情况下,比能U1的计算各种形式:一般形式、应变形式、的计算各种形式:一般形式、应变形式、应力形式、位移形式)应力形式、位移形式)(2)形变余能)形变余能U*、比余能、比余能U*1的概念及计算;与形变比能的概念及计算;与形变比能U1的区别;的区别;在线弹性情况下,形变势能与形变余能存在什么关系?在线弹性情况下,形变势能与形变余能存在什么关系?(3)弹性体总势能)弹性体总势能 的概念及计算;的概念及计算;外力势能外力势能(4)弹性体总余能)弹性体总余能 *的概念及计算;的概念及计算;外力余势能外力余势能(5)形变比能)形变比能U1、比余能

25、比余能U*1与应力、应变的关系:与应力、应变的关系:(11-4)(6)位移变分方程及其物理意义;)位移变分方程及其物理意义;(7)虚功方程及其物理意义;)虚功方程及其物理意义;(7)虚功方程及其物理意义、适用性;)虚功方程及其物理意义、适用性;外力的虚功外力的虚功 =内力的虚功,内力的虚功,适用于任何性质的材料。适用于任何性质的材料。(8)最小势能原理及其物理意义;)最小势能原理及其物理意义;(9)位移变分方程、最小势能原理与弹性力学基本方程的等价性?)位移变分方程、最小势能原理与弹性力学基本方程的等价性?(10)伽辽金变分方程及其与弹性力学基本方程的等价性?)伽辽金变分方程及其与弹性力学基本

26、方程的等价性?(11)Ritz 法法求弹性力学问题的方法与解题步骤;求弹性力学问题的方法与解题步骤;Ritz 法中对位移函数法中对位移函数设定的要求;设定的要求;(12)用)用最小势能原理最小势能原理求弹性力学问题的方法与解题步骤;求弹性力学问题的方法与解题步骤;(13)用)用Ritz 法法或或最小势能原理最小势能原理求弹性力学平面问题、梁的弯曲变形问题;求弹性力学平面问题、梁的弯曲变形问题;(14)用)用Ritz 法法或或最小势能原理最小势能原理推导弹性力学平面问题、梁的弯曲变形问推导弹性力学平面问题、梁的弯曲变形问题的平衡微分方程与应力边界条件;题的平衡微分方程与应力边界条件;(15)用)

27、用伽辽金法伽辽金法求解弹性力学问题时,对位移函数设定的要求;求解弹性力学问题时,对位移函数设定的要求;(16)应力变分方程应力变分方程、最小余能原理最小余能原理及其与弹性力学基本方程的等价性;及其与弹性力学基本方程的等价性;相容方程和位移边界条件相容方程和位移边界条件(17)用)用应力变分方程应力变分方程、最小余能原理最小余能原理求解弹性力学问题的基本步骤;在求解弹性力学问题的基本步骤;在设定应力分量时有何要求;设定应力分量时有何要求;(18)用)用应力变分方程应力变分方程、最小余能原理最小余能原理求解弹性力学平面问题及等截面杆求解弹性力学平面问题及等截面杆扭转问题的基本步骤;在设定应力函数时有何要求;扭转问题的基本步骤;在设定应力函数时有何要求;(19)功的互等定理及其应用;)功的互等定理及其应用;(21)广义变分原理广义变分原理与弹性力学基本方程的等价性?与弹性力学基本方程的等价性?(20)有哪些)有哪些广义变分原理,广义变分原理,其形式如何?其形式如何?

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁