《指数扩充及其运算性质课件3-数学-共同必修1-北师大版.ppt》由会员分享,可在线阅读,更多相关《指数扩充及其运算性质课件3-数学-共同必修1-北师大版.ppt(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、指数扩充及其运算性质指数扩充及其运算性质1 1教学重点:教学重点:、分数指数幂的含义的理解。、根式与分数指数幂的互化。、有理指数幂的运算性质。教学难点:教学难点:、分数指数幂概念的理解。、有理指数幂的运算和化简。2 2有理数指数幂2)当当n为奇数时,为奇数时,=a;当当n为偶数时,为偶数时,=|a|=.3 3正分数指数幂的意义正分数指数幂的意义我们给出我们给出正数的正分数指数幂的定义:正数的正分数指数幂的定义:(a0,m,nN*,且且n1)注注意意:底底数数a0这这个个条条件件不不可可少少.若若无无此此条条件件会会引引起起混混乱乱,例例如如,(-1)1/3和和(-1)2/6应应当当具具有有同同
2、样样的的意意义义,但但由由分分数数指指数数幂幂的的意意义义可可得得出出不不同同的的结果:结果:=-1;=1.这这就就说说明明分分数数指数幂在底数小于指数幂在底数小于0时无意义时无意义.用用语语言言叙叙述述:正正数数的的次次幂幂(m,nN*,且且n1)等于这个正数的等于这个正数的m次幂的次幂的n次算术根次算术根.注注意意:底底数数a0这这个个条条件件不不可可少少.若若无无此此条条件件会会引引起起混混乱乱,例例如如,(-1)1/3和和(-1)2/6应应当当具具有有同同样样的的意意义义,但但由由分分数数指指数数幂幂的的意意义义可可得得出出不不同同的的结果:结果:=-1;=1.这这就就说说明明分分数数
3、指数幂在底数小于指数幂在底数小于0时无意义时无意义.注注意意:底底数数a0这这个个条条件件不不可可少少.若若无无此此条条件件会会引引起起混混乱乱,例例如如,(-1)1/3和和(-1)2/6应应当当具具有有同同样样的的意意义义,但但由由分分数数指指数数幂幂的的意意义义可可得得出出不不同同的的结果:结果:=-1;=1.这这就就说说明明分分数数指数幂在底数小于指数幂在底数小于0时无意义时无意义.4 4负分数指数幂的意义负分数指数幂的意义回忆负整数指数幂的意义:回忆负整数指数幂的意义:an=(a0,nN*).正正数数的的负负分分数数指指数数幂幂的的意意义义和和正正数数的的负负整整数指数幂的意义相仿,就
4、是:数指数幂的意义相仿,就是:(a0,m,nN*,且且n1).规规定定:0的的正正分分数数指指数数幂幂等等于于0;0的的负负分分数数指指数幂没有意义数幂没有意义.注注意意:负负分分数数指指数数幂幂在在有有意意义义的的情情况况下下,总总表表示示正正数数,而而不不是是负负数数,负负号号只只是是出出现在指数上现在指数上.5 5有理指数幂的运算性质有理指数幂的运算性质我我们们规规定定了了分分数数指指数数幂幂的的意意义义以以后后,指指数数的的概概念念就就从从整整数数指指数数推推广广到到有有理理数数指指数数.上上述述关关于于整整数数指指数数幂幂的的运运算算性性质质,对对于于有有理理指指数数幂幂也也同同样样
5、适适用用,即即对对任任意意有有理数理数r,s,均有下面的性质:,均有下面的性质:aras=ar+s(a0,r,sQ);(ar)s=ars(a0,r,sQ);(ab)r=arbr(a0,b0,rQ).6 6说明:说明:若若a0,p是是一一个个无无理理数数,则则ap表表示示一一个个确确定定的的实实数数.上上述述有有理理指指数数幂幂的的运运算算性性质质,对对于于无无理理数数指指数数幂幂都都适适用用.即即当当指指数数的的范范围围扩扩大大到到实实数数集集R后后,幂幂的的运运算算性性质质仍然是下述的仍然是下述的3条条.7 71.正数的正分数指数幂的意义:正数的正分数指数幂的意义:2.正数的负分数指数幂正数
6、的负分数指数幂3.0的分数指数幂的分数指数幂0的正分数指数幂等于的正分数指数幂等于0。0的负分数指数幂无意义。的负分数指数幂无意义。4.有理指数幂的运算性质有理指数幂的运算性质(1)ar as=ar+s(a0,r,sQ)(2)(ar)s=arss(a0,r,sQ)(3)(a b)r=ar br(a0,b0,rQ)注注意意:以以后后当当看看到到指指数数是是分分数数时时,如如果果没没有有特特别的说明,底数都表示正数别的说明,底数都表示正数.8 8练习练习:1、用根式表示(、用根式表示(a0):9 9例例2:求值:求值:分析:此题主要运用有理指数幂的运算性质。分析:此题主要运用有理指数幂的运算性质。
7、解:解:1010练习练习:求值:求值:1111例例3:用分数指数幂的形式表示下列各式:用分数指数幂的形式表示下列各式:分析:此题应结合分数指数幂意义与有理指数幂运算性质。分析:此题应结合分数指数幂意义与有理指数幂运算性质。解:解:1212例例4:计算下列各式(式中字母都是正数)计算下列各式(式中字母都是正数)1313例例4:计算下列各式(式中字母都是正数)计算下列各式(式中字母都是正数)解:解:1414.课堂练习1、计算下列各式:计算下列各式:15151616小结小结:指数概念的扩充,引入分数指数幂概念后,指数概念的扩充,引入分数指数幂概念后,指数概念就实现了由整数指数幂向有理数指数指数概念就
8、实现了由整数指数幂向有理数指数幂的扩充幂的扩充 而且有理指数幂的运算性质对于无理指数幂也而且有理指数幂的运算性质对于无理指数幂也适用,这样指数概念就扩充到了整个实数范围。适用,这样指数概念就扩充到了整个实数范围。对对于指数于指数幂幂 ,当指数当指数n n扩扩大至有理数大至有理数时时,要,要注意底数注意底数a a的的变变化范化范围围。如当。如当n=0n=0时时底数底数a0a0;当当n n为负为负整数指数整数指数时时,底数,底数a0a0;当;当n n为为分数分数时时,底数底数a0a0。分数指数幂的意义及运算性质分数指数幂的意义及运算性质17171818课后作业:课本P68习题3-2 第1,4题.19192020