《最新人教版九年级数学上学期期末检查测试卷(含答案)强烈推荐.doc》由会员分享,可在线阅读,更多相关《最新人教版九年级数学上学期期末检查测试卷(含答案)强烈推荐.doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-_人教版九年级数学上学期期末试卷(第套)(考试时间 90 分钟;卷面满分 120 分)姓名_ 座号_ 成绩_一、选择题(每题一、选择题(每题 3 分,共分,共 30 分)分)1.点 M(1,-2)关于原点对应的点的坐标是()A(1,2) B(1,2) C(-1,2) D(2,1)2.下列图形中,是中心对称图形的是( )ABCD3.将函数231yx 的图象向右平移2个单位得到的新图象的函数解析式为( )A.2321yx B.2321yx C.232yx D.232yx 4.如图,在O 中,AB 为直径,点 C 为圆上一点,将劣弧 AC 沿弦 AC 翻折交 AB 于点 D,连接 CD如果BAC=
2、20,则BDC=( )A.80 B.70 C.60 D.505.下列事件中,必然发生的事件是( )A明天会下雨 B小明数学考试得 99 分C今天是星期一,明天就是星期二 D明年有 370 天6.已知关于 x 的一元二次方程 x2axb0 有一个非零根b,则 ab 的值为()A1 B 0 C 1 D27.当 ab0 时,yax2与 yaxb 的图象大致是( )-_8.如果关于 x 的方程(m3)x+3=0 是关于 x 的一元二次方程,那么 m 的值为( )7-m2xA3B3C3D都不对9.如果一个扇形的半径为 1,弧长是,那么此扇形的圆心角的大小为()3A 300B 450 C 600D 900
3、10.在一幅长为 80cm,宽为 50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是 5400cm2,设金色纸边的宽为cm,那么x满足的方程是()xAB213014000xx2653500xxC D213014000xx2653500xx二、填空题(每题二、填空题(每题 3 分,共分,共 24 分)分)11.关于 x 的一元二次方程(m1)x2xm210 有一根为 0,则 m 的值为_。12.小燕抛一枚硬币 10 次,有 7 次正面朝上,当她抛第 11 次时,正面向上的概率为_。13.已知抛物线 y=x2x1 与 x 轴的一个交点为(m,
4、0),则代数式 m2m+2017 的值为_。14.不透明的袋子中装有 9 个球,其中有 2 个红球、3 个绿球和 4 个蓝球,这些球除颜色外无其他差别. 从袋子中随机取出 1 个球,则它是红球的概率为_。15.已知抛物线 yax2bxc(a0)与 x 轴交于 A,B 两点若点 A的坐标为(2,0),抛物线的对称轴为直线 x2.则线段 AB 的长为_。16.如图,将 RtABC 绕点 A 按顺时针旋转一定角度得到 RtADE,点 B 的对应点 D 恰好落在 BC 边上若 AC,B60,则 CD 的长为_。3第 16 题图 第 17 题图 第 18 题图-_17.如图,PA、PB分别切O于点A、B
5、,点E是O上一点,且60AEB,则P_度。18.抛物线的图象如图,则它的函数表达式是_当 x_时,y0三、简答题(共三、简答题(共 66 分)分)(6 分)19.解方程:(1)x2+4x1=0(2)2(3)4 (3)0xx x(10 分)20.如图,AB 是O 的直径,C 是半圆 O 上的一点,AC 平分DAB 如图,AB 是 O 的直径,C 是半圆 O 上的一点,AC 平分DAB,ADCD,垂足为 D,AD 交O 于 E, 连接 CE. (1)判断 CD 与O 的位置关系,并证明你的结论; (2)若 E 是弧 AC 的中点,O 的半径为 1,求图中阴影部分的面积。(9 分)21.A、B 两组
6、卡片共 5 张,A 中三张分别写有数字 2,4,6,B 中两张分别写有 3,5.它 们除了数字外没有任何区别。 (1)随机地从 A 中抽取一张,求抽到数字为 2 的概率; (2)随机地分别从 A、B 中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结 果,现制定这样一个游戏规则:若选出的两数之积为 3 的倍数,则甲获胜;否则乙获胜。请 问这样的游戏规则对甲乙双方公平吗?为什么? (3)如果不公平请你修改游戏规则使游戏规则对甲乙双方公平。-_(9 分)22、如图,已知 AB 是O 的直径,点 C、D 在O 上,点 E 在O 外, EACD60. (1)求ABC 的度数; (2)求证:AE
7、 是O 的切线; (3)当 BC4 时,求劣弧 AC 的长(10 分)23.我市“利民快餐店”试销某种套餐,试销一段时间后发现,每份套餐的成本为 5 元, 该店每天固定支出费用为 600 元(不含套餐成本) 若每份售价不超过 10 元,每天可销售 400 份;若每份售价超过 10 元,每提高 1 元,每天的销售量就减少 40 份为了便于结算,每份套餐的售价 x(元)取整数,用 y(元)表示该店日纯收入 (日纯收入=每天的销售额套餐成本每天固定支出)(1)若每份套餐售价不超过 10 元 试写出 y 与 x 的函数关系式; 若要使该店每天的纯收入不少于 800 元,则每份套餐的售价应不低于多少元?
8、 (2)该店既要吸引顾客,使每天销售量较大,又要有较高的日纯收入按此要求,每份套餐 的售价应定为多少元?此时日纯收入为多少元?-_(10 分)24.如图,二次函数 y x2bxc 的图象经过 A(2,0),B(0,6)两点12 (1)求这个二次函数的解析式;(2)设该二次函数的对称轴与 x 轴交于点 C,连接 BA,BC,求ABC 的面积x.k.b.1(12 分)25.在平面直角坐标系中,已知抛物线 y=ax2+bx4 经过 A(4,0) ,C(2,0)两点 (1)求抛物线的解析式; (2)若点 M 为第三象限内抛物线上一动点,点 M 的横坐标为 m,AMB 的面积为 S求 S 关于 m 的函
9、数关系式,并求出 S 的最大值;-_(3)若点 P 是抛物线上的动点,点 Q 是直线 y=x 上的动点,点 B 是抛物线与 y 轴交点判断有几个位置能够使以点 P、Q、B、O 为顶点的四边形为平行四边形,直接写出相应的点 Q 的坐标人教版九年级数学上册期中试卷(第套)参考答案一、选择题1-5 AAABC 6-10 CDCCB 二、填空题 11、-112、13、201814、15、816、117、6021 9218、y=x24x+31 或 x3三、简答题19、 (1)解:x2+4x1=0x2+4x=1 x2+4x+4=1+4 (x+2)2=5x=2x1=2+,x2=2(2)解:原方程化为:091
10、852xx解得:x1=3,x2=3 520、解:(1)CD 与圆 O 相切 理由如下: AC 为DAB 的平分线, DAC=BAC, OA=OC,OAC=OCA,DAC=OCA, OCAD, ADCD, OCCD,-_则 CD 与圆 O 相切; (2)连接 EB,交 OC 于 F, AB 为直径,得到AEB=90,EBCD, CD 与O 相切,C 为切点, OCCD,OCAD, 点 O 为 AB 的中点, OF 为ABE 的中位线,OF=AE=,即 CF=DE=, 21 21 21在 RtOBF 中,根据勾股定理得:EF=FB=DC=,23则 S阴影=SDEC=21 21 23 8321、解:
11、(1)P(抽到数字为 2)=1/3; (2)不公平,理由如下画树状图如下:从树状图中可知共有 6 个等可能的结果,而所选出的两数之积为 3 的倍数的机会有 4 个 P(甲获胜),而 P(乙获胜)32 6431 321 P(甲获胜) P(乙获胜) 这样的游戏规则对甲乙双方不公平 22、解:(1)ABC 与D 都是弧 AC 所对的圆周角, ABC=D=60 (2)AB 是O 的直径,ACB=90BAC=30, BAE=BAC+EAC=30+60=90,即 BAAE,来源:Z,xx,k.Com AE 是O 的切线; (3)如图,连接 OC,OB=OC,ABC=60, OBC 是等边三角形,OB=BC
12、=4,BOC=60,AOC=120,劣弧 AC 的长为 38 180412023、解:(1)y=400(x5)600依题意得:400(x5)600800,解得:x8.5,5x10,且每份套餐的售价 x(元)取整数, 每份套餐的售价应不低于 9 元 (2)当 5x10 时,销量为 400(份) ,x=10,-_日净收入最大为 y=400102600=1400 (元)当 x10 时,y=(x5)400(x10)40600=40(x12.5)2+1650,又x 只能为整数,当 x=12 或 13 时,日销售利润最大, 但为了吸引顾客,提高销量,取 x=12,此时的日利润为:40(1212.5)2+1
13、650=1640 元;答:每份套餐的售价为 12 元时,日纯收入为 1640 元24、解:(1)依题意 60021022212cbcb解方程组得: 64cb该二次函数解析式为:y x24x612(2)该抛物线对称轴为直线4 )21(24 2 abx点 C 的坐标为(4,0)ACOCOA422SABC ACOB 266121225、解:(1)将 A(4,0) ,C(2,0)两点代入函数解析式,得解得所以此函数解析式为:y= x2+x4;(2)M 点的横坐标为 m,且点 M 在这条抛物线上,M 点的坐标为:(m, m2+m4) ,S=SAOM+SOBMSAOB= 4( m2+m4)+ 4(m) 4
14、4-_=m22m+82m8=m24m=(m+2)2+4,4m0,当 m=2 时,S 有最大值为:S=4+8=4答:m=2 时 S 有最大值 S=4 (3)点 Q 是直线 y=x 上的动点,设点 Q 的坐标为(a,a) ,点 P 在抛物线上,且 PQy 轴,点 P 的坐标为(a, a2+a4) ,PQ=a(a2+a4)= a22a+4,又OB=0(4)=4,以点 P,Q,B,O 为顶点的四边形是平行四边形, |PQ|=OB,即| a22a+4|=4, a22a+4=4 时,整理得,a2+4a=0,解得 a=0(舍去)或 a=4,a=4,所以点 Q 坐标为(4,4) , a22a+4=4 时,整理得,a2+4a16=0,解得 a=22,所以点 Q 的坐标为(2+2,22)或(22,2+2) 综上所述,Q 坐标为(4,4)或(2+2,22)或(22,2+2)时,使点 P,Q,B,O 为顶点的四边形是平行四边形