《立体几何中空间角的向量解法优秀幻灯片课件.ppt》由会员分享,可在线阅读,更多相关《立体几何中空间角的向量解法优秀幻灯片课件.ppt(44页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、立体几何中空立体几何中空间角的向量解法角的向量解法优秀秀异面直线所成角的范围:异面直线所成角的范围:思考:思考:结论:结论:一、线线角:一、线线角:x xz zy y 向量法向量法质疑:质疑:空间向量的夹角与异面直线的夹角有什么空间向量的夹角与异面直线的夹角有什么 区别?区别?A AD DC CB BD D1 1C C1 1B B1 1A A1 1E E1 1F F1 1 几何法几何法已已知知F1与与E1为为四四等等分分点点,求求异异面面直直线线DF1与与BE1的夹角余弦值?的夹角余弦值?例例1、如图,正三棱柱、如图,正三棱柱ABCA1B1C1的底面边长为的底面边长为a,侧棱长为侧棱长为 求求
2、AC1和和CB1的夹角,的夹角,ABCA1B1C1分析:分析:求异面直线的夹角求异面直线的夹角解法步骤:解法步骤:1、写出、写出异面直线异面直线的方向的方向 向量的坐标。向量的坐标。2、利用空间两个向量的、利用空间两个向量的 夹角公式求出夹角。夹角公式求出夹角。AC1和和CB1的夹角为:的夹角为:xyZD所以 与 所成角的余弦值为解:如图所示,建立空间直角坐标 系 ,如图所示,设 则:所以:练习:练习:斜线与平面所成的角斜线与平面所成的角平面的一条斜线平面的一条斜线和它在这个平面内的射影和它在这个平面内的射影 所成的所成的锐角锐角AOB二、线面角二、线面角当直线与平面垂直时,直当直线与平面垂直
3、时,直线与平面所成的角是线与平面所成的角是90当直线在平面内或当直线在平面内或与平面平行时,与平面平行时,直线与平面所成的角是直线与平面所成的角是0斜线与平面所成的角斜线与平面所成的角(0,90)直线与平面所成的角直线与平面所成的角 0,90异面直线所成的角异面直线所成的角(0,90最小角原理最小角原理AOBC斜线与平面所成的角,是这条斜线和这个平斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中面内的直线所成的一切角中最小的角最小的角。例例2、如图,在正方体、如图,在正方体ABCD-A1B1C1D1 中,中,求求A1B与平面与平面A1B1CD所成的角所成的角ABCDA1B1C1D
4、1OnAB线面角或等于直线的方向向量与平面的法向量线面角或等于直线的方向向量与平面的法向量所成角的补角的余角所成角的补角的余角.二、线面角向量法:二、线面角向量法:范围:线面角等于直线的方向向量与平面的法向量线面角等于直线的方向向量与平面的法向量所成角所成角 的余角的余角.例例2、如图,正三棱柱、如图,正三棱柱ABCA1B1C1的底面边长为的底面边长为a,侧棱长为侧棱长为 1)求)求AC1和和CB1的夹角,的夹角,2)求)求AC1和面和面ABB1A1所成角的正弦值所成角的正弦值ABCA1B1C12)直线与平面所成的角直线与平面所成的角 步骤:步骤:1、求出、求出平面的法向量平面的法向量 2、求
5、出、求出直线的方向向量直线的方向向量 3、求以上两个向量的夹角,、求以上两个向量的夹角,(锐角锐角)其余角为所求角)其余角为所求角设平面设平面ABB1B的法向量:的法向量:所以所以AC1和面和面ABB1A1所成角的正弦值为所成角的正弦值为练习:的棱长为1.正方体xyz解:设正方体棱长为解:设正方体棱长为1,正弦值正弦值OBAAB 从一条直线出发的两个半平面所组成的从一条直线出发的两个半平面所组成的图形叫做图形叫做二面角二面角。这条直线叫做这条直线叫做二面角的棱二面角的棱。这两个半平面叫做这两个半平面叫做二面角的面二面角的面。3定义:AB 二面角二面角 AB l二面角二面角 l 二面角二面角CA
6、B DABCD5OBAAOB表示方法:lOO1ABA1B1A O BA1O1B1?以二面角的以二面角的棱棱上任意一点为端点,在上任意一点为端点,在两个面内两个面内分别作分别作垂直垂直于棱的两条射线,这于棱的两条射线,这两条射线所成的两条射线所成的角角叫做叫做二面角的平面角。二面角的平面角。平面角是平面角是直角直角的二的二面角叫做面角叫做直二面角直二面角9二面角的大小用它的平面角来度量二面角的大小用它的平面角来度量度量:二面角的平面角必须满足二面角的平面角必须满足:3)角的边都要垂直于二面角的棱角的边都要垂直于二面角的棱1)角的顶点在棱上角的顶点在棱上2)角的两边分别在两个面内角的两边分别在两个
7、面内 以二面角的以二面角的棱上任意一点棱上任意一点为端点,为端点,在在两个面内两个面内分别作分别作垂直于棱垂直于棱的两条射线,这的两条射线,这两条射线所成的两条射线所成的角角叫做叫做二面角的平面角。二面角的平面角。10 lOAB二面角的计算几何法:二面角的计算几何法:1、找到或作出二面角的平面角找到或作出二面角的平面角2、证明证明 1中的角就是所求的角中的角就是所求的角3、计算出此角的大小计算出此角的大小一一“作作”二二“证证”三三“计算计算”16.如如图图,正正方方体体ABCDA1B1C1D1中中,二二面面角角C1-BD-C的正切值是的正切值是_.练习ll三、面面角:三、面面角:二面角的范围
8、:向量法向量法注意注意法向量的方向:一进一出,二面角等于法向量夹角;法向量的方向:一进一出,二面角等于法向量夹角;同进同出,二面角等于法向量夹角的补角同进同出,二面角等于法向量夹角的补角 证明:以证明:以 为正交基底,为正交基底,建立空间直角坐标系如图。则可得建立空间直角坐标系如图。则可得例例4.4.已知正方体已知正方体 的边长为的边长为2 2,O为为AC和和BD的交点,的交点,M为为 的中点的中点 (1 1)求证:)求证:直线直线 面面MAC;(2 2)求二面角)求二面角 的余弦值的余弦值.B1A1 C1D1DCBAOMxyz B1A1 C1D1DCBAOMxyz由图可知二面角为锐角由图可知
9、二面角为锐角小结:小结:1.异面直线所成角:2.直线与平面所成角:lDCBA3.二面角:ll一进一出,一进一出,二面角等于二面角等于法向量的夹法向量的夹角;角;同进同出,同进同出,二面角等于二面角等于法向量夹角法向量夹角的补角。的补角。练 习:如图,已知:直角梯形如图,已知:直角梯形OABC中,中,OABC,AOC=90,SO面面OABC,且,且 OS=OC=BC=1,OA=2。求:。求:异面直线异面直线SA和和OB所成的角的余弦值,所成的角的余弦值,OS与面与面SAB所成角所成角的正弦值的正弦值,二面角二面角BASO的余弦值。的余弦值。则A(2,0,0);于是我们有OABCS解:如图建立直角
10、坐标系,xyz=(2,0,-1);=(-1,1,0);=(1,1,0);=(0,0,1);B(1,1,0);S(0,0,1),C(0,1,0);O(0,0,0);令x=1,则y=1,z=2;从而(2)设面SAB的法向量显然有OABCSxyz.由知面SAB的法向量 =(1,1,2)又OC面AOS,是面AOS的法向量,令则有由于所求二面角的大小等于OABCSxyz二面角BASO的余弦值为66所以直线SA与OB所成角余弦值为5102.2.如图,如图,6060的二面角的棱上有的二面角的棱上有A A、B B两点,直线两点,直线ACAC、BDBD分分别在这个二面角的两个半平面内,且都垂直别在这个二面角的两
11、个半平面内,且都垂直ABAB,已知,已知ABAB4 4,ACAC6 6,BDBD8 8,求,求CDCD的长的长.BACD解:如图,建立空间直角坐标系,xyz 由例2知面A1B1C的法向量为 =(0,4,3)下面我们来求面A1 C1C的法向量 设 =(x,y,z),由于 =(3,3,0),令y=1,则x=1,=(1,1,0)又所求二面角为的补角,故二面角B1A1CC1的余弦值为 B1BA1D1C1CDEA练习:在例练习:在例2中,长方体中,长方体AC1的棱的棱AB=BC=3,BB1=4,点点E是是CC1的中点的中点。求求:二面角二面角B1A1CC1的大小。的大小。=(0,0,4)ABCDEMN(
12、本小题满分本小题满分14分分)如图所示的几何体如图所示的几何体ABCDE中,中,DA平面平面EAB,CB/DA,EA=DA=AB=2CB,EAAB,M是是EC的中点,的中点,()求证:求证:DMEB;()求二面角求二面角M-BD-A的余弦值的余弦值.EDCBAMzyx 解解:分别以直线分别以直线AE,AB,AD为为x轴、轴、y轴轴、z轴,轴,建立如图所示的空间直角坐标系建立如图所示的空间直角坐标系A-xyz,设设CB=a,则则A(0,0,0),E(2a,0,0),B(0,2a,0),C(0,2a,a),D(0,0,2a),所以所以M(a,a,)4分DMEB,即即DMEB 7分()解:设平面设平
13、面MBD的法向量为的法向量为n=(x,y,z)DB=(0,2a,2a)由由nDB,nDM得得DM EB=a(2a)+a 2a+0=0()证证:DM=(a,a,1.5a),EB=(2a,2a,0),5分取取z=2得平面得平面MBD的一非零法向量的一非零法向量为为n=(1,2,2),又平面又平面BDA的法向量的法向量为为 n1=(1,0,0),cos 即二面角即二面角M-BD-A的余的余弦值为弦值为 14分 11分EDCBAMzyx 10分此题用此题用“坐标法坐标法”解简单易行!解简单易行!例、如图,正三棱柱例、如图,正三棱柱ABCA1B1C1的底面边长为的底面边长为a,侧棱长为侧棱长为 1)求)
14、求AC1和和CB1的夹角,的夹角,2)求)求AC1和面和面ABB1B所成的夹角所成的夹角 3)求二面角)求二面角BAB1C1的大小的大小 4)M是是A1B1的中点,求点的中点,求点B1到面到面C1MB的距离的距离 5)求)求AM与与B1C1的距离的距离ABCA1B1C1分析:分析:1)求异面直线的夹角求异面直线的夹角解法步骤:解法步骤:1、写出、写出异面直线异面直线的方向的方向 向量的坐标。向量的坐标。2、利用空间两个向量的、利用空间两个向量的 夹角公式求出夹角。夹角公式求出夹角。AC1和和CB1的夹角为:的夹角为:例、如图,正三棱柱例、如图,正三棱柱ABCA1B1C1的底面边长为的底面边长为
15、a,侧棱长为侧棱长为 1)求)求AC1和和CB1的夹角,的夹角,2)求)求AC1和面和面ABB1B所成的夹角所成的夹角 3)求二面角)求二面角BAB1C1的大小的大小 4)M是是A1B1的中点,求点的中点,求点B1到面到面C1MB的距离的距离 5)求)求AM与与B1C1的距离的距离ABCA1B1C12)直线与平面所成的角直线与平面所成的角解法解法1步骤:步骤:1、求出、求出直线的方向向量直线的方向向量的的 坐标和直线在平面内的坐标和直线在平面内的 射影的方向向量射影的方向向量坐标。坐标。2、求以上两个向量的夹角、求以上两个向量的夹角M例、如图,正三棱柱例、如图,正三棱柱ABCA1B1C1的底面
16、边长为的底面边长为a,侧棱长为侧棱长为 1)求)求AC1和和CB1的夹角,的夹角,2)求)求AC1和面和面ABB1B所成的夹角所成的夹角 3)求二面角)求二面角BAB1C1的大小的大小 4)M是是A1B1的中点,求点的中点,求点B1到面到面C1MB的距离的距离 5)求)求AM与与B1C1的距离的距离ABCA1B1C12)直线与平面所成的角直线与平面所成的角解法解法2步骤:步骤:1、求出、求出平面的法向量平面的法向量 2、求出、求出直线的方向向量直线的方向向量 3、求以上两个向量的夹角,、求以上两个向量的夹角,(锐角锐角)其余角为所求角)其余角为所求角设平面设平面ABB1B的法向量:的法向量:例
17、、如图,正三棱柱例、如图,正三棱柱ABCA1B1C1的底面边长为的底面边长为a,侧棱长为侧棱长为 1)求)求AC1和和CB1的夹角,的夹角,2)求)求AC1和面和面ABB1B所成的夹角所成的夹角 3)求二面角)求二面角BAB1C1的大小的大小 4)M是是A1B1的中点,求点的中点,求点B1到面到面C1MB的距离的距离 5)求)求AM与与B1C1的距离的距离ABCA1B1C13)二面角的大小二面角的大小解法解法1步骤:步骤:1、在、在两个半平面内两个半平面内求求垂直垂直 于棱于棱的两条直线的两条直线方向向量方向向量 2、求以上两个向量的夹角、求以上两个向量的夹角在在两个半平面内两个半平面内作作垂
18、直于棱垂直于棱的两条垂线的两条垂线EB、FC1EFABCA1B1C13)二面角的大小二面角的大小解法解法2步骤:步骤:1、求、求两个半平面的法向量两个半平面的法向量 2、求两个法向量的夹角、求两个法向量的夹角 3、当两个法向量、当两个法向量同时指向同时指向二面角的二面角的内(外)部内(外)部,所求角是所求角是法向量的夹角的法向量的夹角的补角补角,否则所求角,否则所求角 是法向量的夹角是法向量的夹角面面BAB1的法向量的法向量设面设面AB1C1的法向量为:的法向量为:所求角为所求角为?例、如图,正三棱柱例、如图,正三棱柱ABCA1B1C1的底面边长为的底面边长为a,侧棱长为侧棱长为 4)M是是A
19、1B1的中点,求点的中点,求点B1到面到面C1MB的距离的距离ABCA1B1C14)求)求点到面的距离点到面的距离解法步骤:解法步骤:1、求平面的法向量;、求平面的法向量;2、求、求该点该点与与平面内任意一点平面内任意一点 所确定的向量;所确定的向量;3、求该向量在平面的、求该向量在平面的法向量法向量 上上的的射影长射影长(即为所求)(即为所求)M1、设面、设面C1MB的法向量为:的法向量为:2、3、例、如图,正三棱柱例、如图,正三棱柱ABCA1B1C1的底面边长为的底面边长为a,侧棱长为侧棱长为 5)求)求AM与与B1C1的距离的距离ABCA1B1C15)求)求两异面直线的距离两异面直线的距
20、离M解法步骤:解法步骤:1、求、求两异面直线两异面直线的公共法向量的公共法向量 2、在两直线上各取一、在两直线上各取一 点作为向点作为向 量的起点和终点,求该向量量的起点和终点,求该向量 3、求该向量在公共、求该向量在公共法向量上法向量上的的 射影长射影长(即为所求)(即为所求)1、设面、设面AM和和B1C1的公共法向量为:的公共法向量为:2、五、方法小结如图,已知点如图,已知点P P(x x0 0,y,y0 0,z,z0 0),A A(x x1 1,y,y1 1,z,z1 1),平面),平面一个法向量一个法向量。,其中,其中,PA此课件下载可自行编辑修改,仅供参考!此课件下载可自行编辑修改,仅供参考!感谢您的支持,我们努力做得更好!谢谢感谢您的支持,我们努力做得更好!谢谢