直线与椭圆的位置关系高频考点习题课升级获奖电子教案.ppt

上传人:豆**** 文档编号:65780121 上传时间:2022-12-08 格式:PPT 页数:25 大小:2.02MB
返回 下载 相关 举报
直线与椭圆的位置关系高频考点习题课升级获奖电子教案.ppt_第1页
第1页 / 共25页
直线与椭圆的位置关系高频考点习题课升级获奖电子教案.ppt_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《直线与椭圆的位置关系高频考点习题课升级获奖电子教案.ppt》由会员分享,可在线阅读,更多相关《直线与椭圆的位置关系高频考点习题课升级获奖电子教案.ppt(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、直线与椭圆的位置关系高频考点习题课升级获奖2.2.弦长问题弦长问题若直线 与椭圆 的交点为 则|AB|叫做弦长。弦长公式:练习练习1.K为何值时为何值时,直线直线y=kx+2和曲线和曲线2x2+3y2=6有有两个公共点两个公共点?有一个公共点有一个公共点?没有公共点没有公共点?练习练习2.无论无论k为何值为何值,直线直线y=kx+2和曲线和曲线交点情况满足交点情况满足()A.没有公共点没有公共点 B.一个公共点一个公共点C.两个公共点两个公共点 D.有公共点有公共点D题型一:直线与椭圆的位置关系题型一:直线与椭圆的位置关系重难聚焦重难聚焦知识拓展由弦长公式可知,求弦长时可以不求出交点坐标,只需

2、先将方程联立,整理成关于x(或y)的一元二次方程,再根据一元二次方程根与系数的关系求出x1+x2,x1x2(或y1+y2,y1y2),代入弦长公式即可.练习:已知直线练习:已知直线y=x-与椭圆与椭圆x2+4y2=2,判断它们的位置关系。,判断它们的位置关系。x2+4y2=2解:联立方程组解:联立方程组消去消去y0因为因为所以,方程()有两个根,所以,方程()有两个根,那么,相交所得的弦的那么,相交所得的弦的弦长弦长是多少?是多少?则原方程组有两组解则原方程组有两组解.-(1)由韦达定理由韦达定理例例1:已知斜率为:已知斜率为1的直线的直线L过椭圆过椭圆 的右焦点,的右焦点,交椭圆于交椭圆于A

3、,B两点,求弦两点,求弦AB之长之长题型二:弦长公式题型二:弦长公式题型二:弦长公式题型二:弦长公式 例例3 :已知椭圆:已知椭圆 过点过点P(2,1)引一弦,使弦在这点被引一弦,使弦在这点被 平分,求此弦所在直线的方程平分,求此弦所在直线的方程.解:解:韦达定理韦达定理斜率斜率韦达定理法:利用韦达定理及中点坐标公式来构造韦达定理法:利用韦达定理及中点坐标公式来构造题型三:中点弦问题题型三:中点弦问题例例 3 已知椭圆已知椭圆 过点过点P(2,1)引一弦,使弦在这点被引一弦,使弦在这点被 平分,求此弦所在直线的方程平分,求此弦所在直线的方程.点差法:利用端点在曲线上,坐标满足方程,作差构造点差

4、法:利用端点在曲线上,坐标满足方程,作差构造 出中点坐标和斜率出中点坐标和斜率点点作差作差题型三:中点弦问题题型三:中点弦问题知识点知识点3:中点弦问题:中点弦问题点差法:点差法:利用端点在曲线上,坐标满足方程,作利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率差构造出中点坐标和斜率直线和椭圆相交有关弦的中点问题,常用设而不求的思想方法 例例3已知椭圆已知椭圆 过点过点P(2,1)引一弦,使弦在这点被引一弦,使弦在这点被 平分,求此弦所在直线的方程平分,求此弦所在直线的方程.所以所以 x2+4y2=(4-x)2+4(2-y)2,整理得,整理得x+2y-4=0从而从而A,B在直线在直线x

5、+2y-4=0上上而过而过A,B两点的直线有且只有一条两点的直线有且只有一条解后反思:中点弦问题求解关键在于充分利用解后反思:中点弦问题求解关键在于充分利用“中点中点”这这一一 条件,灵活运用中点坐标公式及韦达定理,条件,灵活运用中点坐标公式及韦达定理,题型三:中点弦问题题型三:中点弦问题练习练习:1、如果椭圆被、如果椭圆被 的弦被(的弦被(4,2)平分,那)平分,那 么这弦所在直线方程为(么这弦所在直线方程为()A、x-2y=0 B、x+2y-4=0 C、2x+3y-12=0 D、x+2y-8=02、y=kx+1与椭圆与椭圆 恰有公共点,则恰有公共点,则m的范围(的范围()A、(、(0,1)

6、B、(、(0,5)C、1,5)(5,+)D、(、(1,+)3、过椭圆、过椭圆 x2+2y2=4 的左焦点作倾斜角为的左焦点作倾斜角为300的直线,的直线,则弦长则弦长|AB|=_ ,DClmm题型一:直线与椭圆的位置关系题型一:直线与椭圆的位置关系 oxy题型一:直线与椭圆的位置关系题型一:直线与椭圆的位置关系 oxy思考:最大的距离是多少?题型一:直线与椭圆的位置关系题型一:直线与椭圆的位置关系3、弦中点问题弦中点问题的两种处理方法:的两种处理方法:(1)联立方程组,消去一个未知数,利用韦达定理;)联立方程组,消去一个未知数,利用韦达定理;(2)设两端点坐标,代入曲线方程相减可求出弦的斜率。)设两端点坐标,代入曲线方程相减可求出弦的斜率。1、直线与椭圆的三种位置关系及判断方法;、直线与椭圆的三种位置关系及判断方法;2、弦长的计算方法:、弦长的计算方法:弦长公式:弦长公式:|AB|=(适用于任何曲线)(适用于任何曲线)小小 结结解方程组消去其中一元得一元二次型方程解方程组消去其中一元得一元二次型方程 0 相交相交此课件下载可自行编辑修改,仅供参考!此课件下载可自行编辑修改,仅供参考!感谢您的支持,我们努力做得更好!谢谢感谢您的支持,我们努力做得更好!谢谢

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁