最新高二数学必考知识点总结2022.docx

上传人:有**** 文档编号:65568561 上传时间:2022-12-05 格式:DOCX 页数:5 大小:39.24KB
返回 下载 相关 举报
最新高二数学必考知识点总结2022.docx_第1页
第1页 / 共5页
最新高二数学必考知识点总结2022.docx_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《最新高二数学必考知识点总结2022.docx》由会员分享,可在线阅读,更多相关《最新高二数学必考知识点总结2022.docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、最新高二数学必考知识点总结2022最新高二数学必考知识点总结1、在中学我们只研直圆柱、直圆锥和直圆台。所以对圆柱、圆锥、圆台的旋转定义、实际上是直圆柱、直圆锥、直圆台的定义。这样定义直观形象,便于理解,而且对它们的性质也易推导。对于球的定义中,要注意区分球和球面的概念,球是实心的。等边圆柱和等边圆锥是特殊圆柱和圆锥,它是由其轴截面来定义的,在实践中运用较广,要注意与一般圆柱、圆锥的区分。2、圆柱、圆锥、圆和球的性质(1)圆柱的性质,要强调两点:一是连心线垂直圆柱的底面;二是三个截面的性质平行于底面的截面是与底面全等的圆;轴截面是一个以上、下底面圆的直径和母线所组成的矩形;平行于轴线的截面是一个

2、以上、下底的圆的弦和母线组成的矩形。(2)圆锥的性质,要强调三点平行于底面的截面圆的性质:截面圆面积和底面圆面积的比等于从顶点到截面和从顶点到底面距离的平方比。过圆锥的顶点,且与其底交的截面是一个由两条母线和底面圆的弦组成的等腰三角形,其面积为:易知,截面三角形的顶角不大于轴截面的顶角(如图10-20),事实上,由BCAB,VC=VB=VA可得BBVC、由于截面三角形的顶角不大于轴截面的顶角。所以,当轴截面的顶角90,有090时,轴截面的面积却不是的,这是因为,若90sin0、圆锥的母线l,高h和底面圆的半径组成一个直径三角形,圆锥的有关计算问题,一般都要归结为解这个直角三角形,特别是关系式l

3、2=h2+R2(3)圆台的性质,都是从“圆台为截头圆锥”这个事实推得的,高考,但仍要强调下面几点:圆台的母线共点,所以任两条母线确定的截面为一等腰梯形,但是,与上、下底面都相交的截面不一定是梯形,更不一定是等腰梯形。平行于底面的截面若将圆台的高分成距上、下两底为两段的截面面积为S,则其中S1和S2分别为上、下底面面积。的截面性质的推广。圆台的母线l,高h和上、下两底圆的半径r、R,组成一个直角梯形,且有l2=h2+(R-r)2圆台的有关计算问题,常归结为解这个直角梯形。(4)球的性质,着重掌握其截面的性质。用任意平面截球所得的截面是一个圆面,球心和截面圆圆心的连线与这个截面垂直。如果用R和r分

4、别表示球的半径和截面圆的半径,d表示球心到截面的距离,则R2=r2+d2即,球的半径,截面圆的半径,和球心到截面的距离组成一个直角三角形,有关球的计算问题,常归结为解这个直角三角形。3、圆柱、圆锥、圆台和球的表面积(1)圆柱、圆锥、圆台和多面体一样都是可以平面展开的。圆柱、圆锥、圆台的侧面展开图,是求其侧面积的基本依据。圆柱的侧面展开图,是由底面图的周长和母线长组成的一个矩形。圆锥和侧面展开图是一个由两条母线长和底面圆的周长组成的扇形,其扇形的圆心角为圆台的侧面展开图是一个由两条母线长和上、下底面周长组成的扇环,其扇环的圆心角为这个公式有利于空间几何体和其侧面展开图的互化显然,当r=0时,这个

5、公式就是圆锥侧面展开图扇形的圆心角公式,所以,圆锥侧面展开图扇形的圆心角公式是圆台相关角的特例。(2)圆柱、圆锥和圆台的侧面公式为S侧=(r+R)l当r=R时,S侧=2Rl,即圆柱的侧面积公式。当r=0时,S侧=rRl,即圆锥的面积公式。要重视,侧面积间的这种关系。(3)球面是不能平面展开的图形,所以,求它的面积的与柱、锥、台的方法完全不同。推导出来,要用“微积分”等高等数学的知识,课本上不能算是一种证明。求不规则圆形的度量属性的常用方法是“细分求和取极限”,这种方法,在学完“微积分”的相关内容后,不证自明,这里从略。4、画圆柱、圆锥、圆台和球的直观图的方法正等测(1)正等测画直观图的要求:画

6、正等测的X、Y、Z三个轴时,z轴画成铅直方向,X轴和Y轴各与Z轴成120。在投影图上取线段长度的方法是:在三轴上或平行于三轴的线段都取实长。这里与斜二测画直观图的方法不同,要注意它们的区别。(2)正等测圆柱、圆锥、圆台的直观图的区别主要是水平放置的平面图形。相同,也都取实长。5、关于几何体表面内两点间的最短距离问题柱、锥、台的表面都可以平面展开,这些几何体表面内两点间最短距离,就是其平面内展开图内两点间的线段长。由于球面不能平面展开,所以求球面内两点间的球面距离是一个全新的方法,这个最短距离是过这两点大圆的劣弧长。高二数学的知识点总结大全平面向量戴氏航天学校老师总结加法与减法的代数运算:(1)

7、若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2).向量加法与减法的几何表示:平行四边形法则、三角形法则。戴氏航天学校老师总结向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);两个向量共线的充要条件:(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.(2)若=(),b=()则b.平面向量基本定理:若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,戴氏航天学校老师提醒有且只有一对实数,使得=e1+e2高二数学重要知识点归纳大全直线、平面、简单几何体:1、学会三视图的分析:2、斜二测画法应注意的地方:(1)在已知图

8、形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴ox、oy、使xoy=45(或135);(2)平行于x轴的线段长不变,平行于y轴的线段长减半.(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.3、表(侧)面积与体积公式:柱体:表面积:S=S侧+2S底;侧面积:S侧=;体积:V=S底h锥体:表面积:S=S侧+S底;侧面积:S侧=;体积:V=S底h:台体表面积:S=S侧+S上底S下底侧面积:S侧=球体:表面积:S=;体积:V=4、位置关系的证明(主要方法):注意立体几何证明的书写(1)直线与平面平行:线线平行线面平行;面面平行线面平行。(2)平面与平面平行:线面平行面面平行。(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线5、求角:(步骤.找或作角;.求角)异面直线所成角的求法:平移法:平移直线,构造三角形;

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁