《第四章 离散傅里叶变换优秀PPT.ppt》由会员分享,可在线阅读,更多相关《第四章 离散傅里叶变换优秀PPT.ppt(71页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第四章第四章 离散傅里叶离散傅里叶变换变换第一页,本课件共有71页本章目录本章目录4.1 引言24.3进一步减少运算量的措施4.4其他快速算法的简介4.2 基2FFT算法(重点)第二页,本课件共有71页4.1 引言引言 DFTDFT在实际应用中很重要在实际应用中很重要:可以计算信号的频谱、可以计算信号的频谱、功率谱和线性卷积等。功率谱和线性卷积等。直接按直接按DFTDFT变换进行计算,当序列长度变换进行计算,当序列长度N N很大时,很大时,计算量非常大,所需时间会很长。计算量非常大,所需时间会很长。FFTFFT并不是一种与并不是一种与DFTDFT不同的变换,而是不同的变换,而是DFTDFT的一
2、种快的一种快速计算的算法。速计算的算法。3第三页,本课件共有71页4.2 基2FFT算法n n按时间抽取时间抽取的基2-FFT算法(DIT)n n按频率抽取频率抽取的基2-FFT算法(DIF)n n快速快速傅里叶逆变换(IFFT)直接计算DFT的问题及改进途径第四页,本课件共有71页直接计算直接计算DFTDFT的问题及改进途径的问题及改进途径1、问题的提出、问题的提出 设有限长序列设有限长序列x(n),非零值长度为非零值长度为N,若对若对x(n)进行一次进行一次DFT运算,共需运算,共需多大的运算工作量多大的运算工作量?计算成本计算成本?计算速度计算速度?第五页,本课件共有71页2.DFT的运
3、算量的运算量 回忆回忆DFT和和IDFT的变换式:的变换式:1)x(n)为为复数复数,也为也为复数复数。2)DFT与与IDFT的的计算量相当。计算量相当。注意:注意:第六页,本课件共有71页计算机运算时(编程实现):计算机运算时(编程实现):N N次复乘,次复乘,次复乘,次复乘,N-1N-1次复加次复加次复加次复加 N N个点个点个点个点 以以DFT为例:为例:第七页,本课件共有71页复数乘法复数乘法复数加法复数加法一个一个X(k)NN 1N个个X(k)(N点点DFT)N 2N(N 1)实数乘法实数乘法实数加法实数加法一次复乘一次复乘42一次复加一次复加2一个一个X(k)4N2N+2(N 1)
4、=2(2N 1)N个个X(k)(N点点DFT)4N 22N(2N 1)运算量运算量(a+jb)(c+jd)=(ac-bd)+j(bc+ad)第八页,本课件共有71页例:计算一个例:计算一个 N点点DFT,共需共需N2次复乘次复乘。以做一次。以做一次 复乘复乘1s计,若计,若N=4096,所需时间为所需时间为例:石油勘探,有例:石油勘探,有24个通道的记录,每通道波形记个通道的记录,每通道波形记 录长度为录长度为5秒,若每秒抽样秒,若每秒抽样500点点/秒,秒,1)每道总抽样点数:)每道总抽样点数:500*5=2500点点 2)24道总抽样点数:道总抽样点数:24*2500=6万点万点 3)DF
5、T复乘运算时间:复乘运算时间:N2=(60000)2=36*108次次第九页,本课件共有71页 由于计算量大,且要求由于计算量大,且要求相当大的内存相当大的内存,难以实现实时处难以实现实时处理理,限制了,限制了DFT的应用。长期以来,人们一直在寻求一的应用。长期以来,人们一直在寻求一种能种能提高提高DFT运算速度运算速度的方法。的方法。FFT便是便是 Cooley&Tukey 在在1965 年提出的的快速年提出的的快速算法,它可以使运算速度提高几百倍,从而使数字信号算法,它可以使运算速度提高几百倍,从而使数字信号处理学科成为一个新兴的应用学科。处理学科成为一个新兴的应用学科。第十页,本课件共有
6、71页改善改善DFTDFT运算效率的基本途径运算效率的基本途径 1、利用、利用DFT运算的系数运算的系数 的固有对称性和周期的固有对称性和周期 性,改善性,改善DFT的运算效率。的运算效率。1)对称性)对称性 2)周期性)周期性 3)可约性)可约性第十一页,本课件共有71页第十二页,本课件共有71页2、将长序列、将长序列DFT利用对称性和周期性分解为短利用对称性和周期性分解为短 序列序列DFT的的思路思路 因为因为DFT的运算量与的运算量与N2成正比的,如果一个成正比的,如果一个大点大点数数N的的DFT能分解为能分解为若干小点数若干小点数DFT的组合的组合,则显然可,则显然可以达到以达到减少运
7、算工作量减少运算工作量的效果。的效果。第十三页,本课件共有71页N点点DFTN/2点点DFTN/2点点DFTN/4点点DFTN/4点点DFTN/4点点DFTN/4点点DFT.复乘:复乘:第十四页,本课件共有71页 FFT算法的基本思想:算法的基本思想:n 利用利用DFT系数的特性,合并系数的特性,合并DFT运算中的某些项运算中的某些项n 把长序列把长序列DFT短序列短序列DFT,从而减少运算量。从而减少运算量。FFT算法分类算法分类:时间抽选法时间抽选法 DIT:Decimation-In-Time频率抽选法频率抽选法 DIF:Decimation-In-Frequency第十五页,本课件共有
8、71页按时间抽选的基按时间抽选的基2-FFT算法算法1、算法原理、算法原理 设输入序列长度为设输入序列长度为N=2M(M为正整数,将该序列为正整数,将该序列按时间顺序的奇偶分解按时间顺序的奇偶分解为越来越短的子序列,称为基为越来越短的子序列,称为基2按时间抽取的按时间抽取的FFT算法。也称为算法。也称为Coolkey-Tukey算法。算法。其中其中基基2表示:表示:N=2M,M为整数为整数.若不满足这个条若不满足这个条件,可以人为地加上若干零值(件,可以人为地加上若干零值(加零补长加零补长)使其达到)使其达到 N=2M。第十六页,本课件共有71页先将先将x(n)按按n的奇偶分为两组,作变量置换
9、的奇偶分为两组,作变量置换:当当n=偶数时,令偶数时,令n=2r;当当n=奇数时,令奇数时,令n=2r+1;n 分组,变量置换分组,变量置换2、算法步骤、算法步骤得到:得到:第十七页,本课件共有71页n 带入带入DFT中中第十八页,本课件共有71页所以所以 由于由于?第十九页,本课件共有71页 X1(k)、X2(k)只有只有N/2个点,以个点,以N/2为周期;而为周期;而X(k)却有却有N个点,以个点,以N为周期。要用为周期。要用X1(k)、X2(k)表达全部的表达全部的X(k)值,还必须利用值,还必须利用WN系数的系数的周期特性周期特性。第二十页,本课件共有71页后半部分后半部分前半部分前半
10、部分又考虑到又考虑到 的对称性:的对称性:有:有:第二十一页,本课件共有71页后半部分后半部分前半部分前半部分蝶形运算流图符号蝶形运算流图符号说明:说明:(1)左边两路为输入左边两路为输入(2)右边两路为输出右边两路为输出(3)中间以一个小圆表示加、中间以一个小圆表示加、减运算(右上路为相加减运算(右上路为相加 输出、右下路为相减输输出、右下路为相减输 出出)1个蝶形运算需要个蝶形运算需要1次复乘,次复乘,2次复加次复加第二十二页,本课件共有71页复数乘法复数乘法复数加法复数加法一个一个N 点点DFTN 2N(N1)一个一个N/2点点DFT(N/2)2N/2(N/2 1)两个两个N/2点点DF
11、TN 2/2N(N/2 1)一个蝶形一个蝶形12N/2个蝶形个蝶形N/2N总计总计N2/2+N/2 N2/2N(N/2-1)+N N2/2运算量减少了近一半运算量减少了近一半n 分解后的运算量:分解后的运算量:第二十三页,本课件共有71页先将先将N=8点的点的DFT分解成分解成2个个4点点DFT:可知:可知:时域上:时域上:x(0),x(2),x(4),x(6)为偶子序列为偶子序列 x(1),x(3),x(5),x(7)为奇子序列为奇子序列 频域上:频域上:X(0)X(3),由,由X(k)给出给出 X(4)X(7),由,由X(k+N/2)给出给出例子:求例子:求 N=23=8点点FFT变换变换
12、 按按N=8N/2=4,做做4点的点的DFT:第二十四页,本课件共有71页 N=8点的直接点的直接DFT的计算量为:的计算量为:复乘:复乘:N2次次=64次次 复加:复加:N(N-1)次次=87=56次次 此外,还有此外,还有4个蝶形结,每个蝶形结需要个蝶形结,每个蝶形结需要1次复乘,次复乘,2次复加。次复加。一共是:复乘一共是:复乘4次,复加次,复加8次。次。得到得到X1(k)和和X2(k)需要:需要:复乘:复乘:(N/2)2+(N/2)2次次=32次次 复加:复加:N/2(N/2-1)+N/2(N/2-1)=12+12=24次次用分解的方法得到用分解的方法得到X(k)需要:需要:复乘:复乘
13、:32+4=36次次 复加:复加:24+8=32次次第二十五页,本课件共有71页N点点DFT的一次时域抽取分解图的一次时域抽取分解图(N=8)4点点DFT4点点DFTx(0)x(2)x(4)x(6)x(1)x(3)x(5)x(7)X1(0)X1(1)X1(2)X1(3)X2(0)X2(1)X2(2)X2(3)X(0)X(1)X(2)X(3)X(4)X(5)X(6)X(7)第二十六页,本课件共有71页因为因为4点点DFT还是比较麻烦,所以再继续分解。还是比较麻烦,所以再继续分解。若将若将N/2(4点点)子序列按奇子序列按奇/偶分解成两个偶分解成两个N/4点点(2点点)子子序列。即对将序列。即对将
14、x1(r)和和x2(r)分解成奇、偶两个分解成奇、偶两个N/4点点(2点点)点的子序列。点的子序列。第二十七页,本课件共有71页那么,那么,X1(k)又可表示为又可表示为 第二十八页,本课件共有71页X2(k)也可以进行相同的分解:也可以进行相同的分解:注意:通常我们会把注意:通常我们会把 写成写成 。第二十九页,本课件共有71页N点点DFT的第二次时域抽取分解图的第二次时域抽取分解图(N=8)2点点DFT2点点DFT2点点DFT2点点DFTx(0)x(4)x(2)x(6)x(1)x(5)x(3)x(7)X3(0)X3(1)X4(0)X4(1)X5(0)X5(1)X6(0)X6(1)X1(0)
15、X1(1)X1(2)X1(3)X2(0)X2(1)X2(2)X2(3)X(0)X(1)X(2)X(3)X(4)X(5)X(6)X(7)4点点DFT4点点DFTx(0)x(2)x(4)x(6)x(1)x(3)x(5)x(7)X1(0)X1(1)X1(2)X1(3)X2(0)X2(1)X2(2)X2(3)X(0)X(1)X(2)X(3)X(4)X(5)X(6)X(7)第三十页,本课件共有71页88X3(0)X3(1)x(0)=x3(0)x(4)=x3(1)第三十一页,本课件共有71页N点点DITFFT运算流图运算流图(N=8)x(0)x(4)x(2)x(6)x(1)x(5)x(3)x(7)X(0)
16、X(1)X(2)X(3)X(4)X(5)X(6)X(7)第三十二页,本课件共有71页3、DITFFT算法与直接计算算法与直接计算DFT运算量的比较运算量的比较1)、N=2M的的DFT运算可分成运算可分成M级,每一级有级,每一级有N/2个蝶形个蝶形 ,每个蝶形有一次复乘两次复加。,每个蝶形有一次复乘两次复加。2)、所以、所以M级共有级共有 次复乘和次复乘和 次复加。次复加。3)、若直接计算、若直接计算DFT,需需N2次复乘和次复乘和N(N-1)次复加。次复加。显然,当显然,当N较大时,有:较大时,有:例如,例如,N=210=1024时时第三十三页,本课件共有71页FFT算法与直接计算算法与直接计
17、算DFT所需乘法次数的比较曲线所需乘法次数的比较曲线第三十四页,本课件共有71页4、DITFFT的运算规律及编程思想的运算规律及编程思想 FFT的每级(列)计算都是由的每级(列)计算都是由N个复数数据(输入)两两个复数数据(输入)两两构成一个蝶型(共构成一个蝶型(共N/2个蝶形)运算而得到另外个蝶形)运算而得到另外N个复数数据个复数数据(输出)。(输出)。当数据输入到存储器以后,每一组运算的结果,当数据输入到存储器以后,每一组运算的结果,仍然存放在这仍然存放在这同一组存储器中同一组存储器中直到最后输出。直到最后输出。例:将例:将x(0)放在单元放在单元A(0)中,将中,将x(4)放在单元放在单
18、元A(1)中,中,W80 放在一个暂存器中。放在一个暂存器中。将将x(0)+W80 x(4)送回送回A(0)单元单元将将x(0)-W80 x(4)送回送回A(1)单元单元X3(0)X3(1)x(0)x(4)1)原位运算原位运算 (亦称同址计算亦称同址计算)第三十五页,本课件共有71页x(0)x(4)x(2)x(6)x(1)x(5)x(3)x(7)X(0)X(1)X(2)X(3)X(4)X(5)X(6)X(7)回顾:回顾:N点点DITFFT运算流图运算流图(N=8)第三十六页,本课件共有71页 如上所述,如上所述,N点点DITFFT运算流图中,每级都有运算流图中,每级都有N/2个蝶形。每个蝶形都
19、要乘以因子个蝶形。每个蝶形都要乘以因子WNP,称其为称其为旋转因旋转因子子,p称为旋转因子的指数。称为旋转因子的指数。2)旋转因子的变化规律旋转因子的变化规律 观察观察FFT运算流图发现,第运算流图发现,第L级共有级共有2L-1个不同的旋个不同的旋转因子。转因子。N=23=8时的各级旋转因子表示如下:时的各级旋转因子表示如下:L=1时,时,WNp=WN/4J,N/4=21=2L,J=0L=2时,时,WNp=WN/2J,N/2=22=2L,J=0,1L=3时,时,WNp=WNJ,N =23=2L,J=0,1,2,3第三十七页,本课件共有71页对对N=2M的一般情况,第的一般情况,第L级的旋转因子
20、为:级的旋转因子为:第三十八页,本课件共有71页 设序列设序列x(n)经时域抽选经时域抽选(倒序倒序)后,存入数组后,存入数组X中。如中。如果蝶形运算的两个输入数据相距果蝶形运算的两个输入数据相距B个点个点(B=2L-1),应用应用原位计算,则蝶形运算可表示成如下形式:原位计算,则蝶形运算可表示成如下形式:下标下标L表示第表示第L级运算,级运算,XL(J)则表示第则表示第L级运算后数级运算后数组元素组元素X(J)的值。的值。第三十九页,本课件共有71页3)编程思想及流程图编程思想及流程图开始开始送入送入x(n)和和N=2M调整输入调整输入x(n)的顺序的顺序for(L=1;L=M;L+)B=2
21、L-1for(J=0;J=B-1;J+)p=J2M-Lfor(k=J;k=N-1;k=k+2L)输出结果输出结果结束结束第四十页,本课件共有71页4)码位倒序码位倒序 由由N=8蝶形图看出:原位计算时,蝶形图看出:原位计算时,FFT输出的输出的X(k)的次序正好是顺序排列的,即的次序正好是顺序排列的,即X(0)X(7),但输入但输入x(n)都不能按自然顺序存入到存储单元中,而是按都不能按自然顺序存入到存储单元中,而是按x(0),x(4),x(2),x(6),x(1),x(5),x(3),x(7)的顺序存入存的顺序存入存储单元,即为乱序输入,顺序输出。储单元,即为乱序输入,顺序输出。这种顺序看起
22、来相当杂乱,然而它是这种顺序看起来相当杂乱,然而它是有规律有规律的。的。即即码位倒读规则码位倒读规则。第四十一页,本课件共有71页自然顺序自然顺序n二进制码表示二进制码表示码位倒读码位倒读码位倒置顺序码位倒置顺序n以以N=8为例:为例:0123456700000101001110010111011100010001011000110101111104261537看出:看出:码位倒读后码位倒读后的顺序刚好是数据送入计算机内的顺序。的顺序刚好是数据送入计算机内的顺序。第四十二页,本课件共有71页倒序规律倒序规律第四十三页,本课件共有71页n n 对于数对于数对于数对于数N,在其二进制最高位加在其二
23、进制最高位加在其二进制最高位加在其二进制最高位加1 1,等于加,等于加,等于加,等于加N/2N/2。n 若已知某个反序号为若已知某个反序号为J J,为求下一个反序号,可先判为求下一个反序号,可先判J的最高位:的最高位:1)若为若为0,则把该位变成,则把该位变成1(即加(即加N/2)就得到下就得到下 一个反序号,一个反序号,2)若为若为1,则需判断次高位:,则需判断次高位:若次高位为若次高位为0,则把最高位变,则把最高位变0(相当减去(相当减去 N/2)后,再把次高位变后,再把次高位变1(即加(即加N/4)。)。若次高位为若次高位为若次高位为若次高位为1 1,则需判断次次高位,则需判断次次高位,
24、则需判断次次高位,则需判断次次高位分析:分析:第四十四页,本课件共有71页倒倒序序排排列列算算法法的的流流程程图图正序序列已在数组正序序列已在数组A 中,输中,输 入入 NLH=N/2 ,j=LH ,N1=N-2j=j-kk=k/2 k=LHjkj=j+k T=A(j)A(i)=A(j)A(j)=Tfor(i=1;i=N1;i+)i jN NY YY YN N第四十五页,本课件共有71页按频率抽选的基按频率抽选的基2-FFT算法算法 在基在基2快速算法中,频域抽取法快速算法中,频域抽取法FFT也是一种常用也是一种常用的快速算法,简称的快速算法,简称DIFFFT。设序列设序列x(n)长度为长度为
25、N=2M,首先将首先将x(n)前后对半分前后对半分开,得到两个子序列,其开,得到两个子序列,其DFT可表示为如下形式可表示为如下形式第四十六页,本课件共有71页第四十七页,本课件共有71页第四十八页,本课件共有71页第四十九页,本课件共有71页DIFFFT一次分解运算流图一次分解运算流图(N=8)4点点DFT4点点DFTx(0)x(1)x(2)x(3)x(4)x(5)x(6)x(7)X(0)X(2)X(4)X(6)X(1)X(3)X(5)X(7)x1(0)x1(1)x1(2)x1(3)x2(0)x2(1)x2(2)x2(3)第五十页,本课件共有71页DIFFFT二次分解运算流图二次分解运算流图
26、(N=8)第五十一页,本课件共有71页DIFFFT运算流图运算流图(N=8)第五十二页,本课件共有71页n 时间抽取算法与频率抽取算法的比较时间抽取算法与频率抽取算法的比较1)频率抽选法和时间抽选法总的计算量是相同的频率抽选法和时间抽选法总的计算量是相同的复乘:复乘:复加:复加:2)频率抽取法和时间抽取法一样,都适用于频率抽取法和时间抽取法一样,都适用于原位运原位运 算算,即蝶形的输入和输出占用同一个存储单元。即蝶形的输入和输出占用同一个存储单元。3)均存在码位倒序问题。均存在码位倒序问题。4)频率抽选法和时间抽选法一样,基本运算也是蝶形频率抽选法和时间抽选法一样,基本运算也是蝶形 运算。但两
27、者的蝶形形式略有不同。运算。但两者的蝶形形式略有不同。第五十三页,本课件共有71页 IDFT的快速算法的快速算法IFFT上述上述FFT算法流图也可以用于离散傅里叶逆变换算法流图也可以用于离散傅里叶逆变换(Inverse Discrete Fourier Transform,简称简称IDFT)。比较比较DFT和和IDFT的运算公式:的运算公式:1)旋转因子:旋转因子:2)系数:系数:第五十四页,本课件共有71页DITIFFT运算流图运算流图 第五十五页,本课件共有71页DITIFFT运算流图运算流图(防止溢出防止溢出)第五十六页,本课件共有71页 如果希望直接调用如果希望直接调用FFT子程序计算
28、子程序计算IFFT,则可用下则可用下面的方法:面的方法:对上式两边同时取共轭,得:对上式两边同时取共轭,得:第五十七页,本课件共有71页例例1、如果通用计算机的速度为平均每次复乘需要、如果通用计算机的速度为平均每次复乘需要 5 s,每次复加需要,每次复加需要0.5 s,用它来计算用它来计算512点点 的的DFTx(n),问:问:1)直接计算需要多少时间?)直接计算需要多少时间?2)用)用FFT需要多少时间?需要多少时间?解:解:1)用)用DFT进行运算:进行运算:复乘:复乘:T1=N2510-6=1.31072秒秒 复加:复加:T2=N(N-1)0.510-6=0.130816秒秒 总共:总共
29、:T=T1+T2=1.441536秒秒第五十八页,本课件共有71页2)用)用FFT进行运算:进行运算:复乘:复乘:T1=(N/2)log2N510-6=0.01152秒秒 复加:复加:T2=Nlog2N 0.510-6=0.002304秒秒 总共:总共:T=T1+T2=0.013824秒秒第五十九页,本课件共有71页例例2、对一个连续时间信号、对一个连续时间信号xa(t)采样采样1秒得到秒得到4096个采个采 样点的序列,求:样点的序列,求:1)若采样后没有发生混叠现象,)若采样后没有发生混叠现象,xa(t)的最高频率是的最高频率是 多少?多少?解:解:1秒内采样秒内采样4096个点,说明采样
30、频率是个点,说明采样频率是4096Hz。第六十页,本课件共有71页2)若计算采样信号的)若计算采样信号的4096点点DFT,DFT系数之间系数之间 的频率间隔是多少?的频率间隔是多少?解:解:(要求解的是频谱分辨的间隔要求解的是频谱分辨的间隔F)第六十一页,本课件共有71页例例3、长度为、长度为240点的序列点的序列x(n)与长度为与长度为N点的点的h(n)卷卷 积。当积。当N=10和和240时,直接进行卷积时,直接进行卷积 x(n)*h(n)和用和用 IFFTX(K)H(K)的方法相比,那种方法求的方法相比,那种方法求 解解y(n)的效率更高?的效率更高?x(n)h(n)y(n)=x(n)*
31、h(n)LN1+N2-1X(k)补补L-N1个零个零x(n)L点点DFT补补L-N2个零个零h(n)L点点DFTL点点IDFTy(n)=x(n)*h(n)H(k)Y(k)第六十二页,本课件共有71页直接进行卷积(直接进行卷积(N=10):):乘法次数:乘法次数:24010=2400次次用用FFT的方法(的方法(N=10):):添零到添零到256点,点,L=256乘法次数:乘法次数:3(L/2)log2LL=31288256=3328次次第六十三页,本课件共有71页直接进行卷积(直接进行卷积(N=240):):乘法次数:乘法次数:240240=57600次次用用FFT的方法(的方法(N=240)
32、:):添零到添零到512点,点,L=512乘法次数:乘法次数:3(L/2)log2LL=32569512=7424次次第六十四页,本课件共有71页4.3 进一步减少运算量的措施进一步减少运算量的措施 4.3.1 多类蝶形单元运算 由DITFFT运算流图已得出结论,N=2M点FFT共需要MN/2次复数乘法。由(4.2.12)式,当L=1时,只有一种旋转因子=1,所以,第一级不需要乘法运算。第六十五页,本课件共有71页n 综上所述,先除去第一、二两级后,所需复数乘法次数应是n 从L=3至L=M共减少复数乘法次数为(4.3.1)(4.3.2)因此,DITFFT的复乘次数降至(4.3.3)第六十六页,
33、本课件共有71页第六十七页,本课件共有71页n 从实数运算考虑,计算N=2M点DITFFT所需实数乘法次数为(4.3.4)第六十八页,本课件共有71页 4.3.2 旋转因子的生成 在FFT运算中,旋转因子WmN=cos(2m/N)-jsin(2m/N),求正弦和余弦函数值的计算量是很大的。第六十九页,本课件共有71页 4.3.3 实序列的FFT算法 设x(n)为N点实序列,取x(n)的偶数点和奇数点分别作为新构造序列y(n)的实部和虚部,即对y(n)进行N/2点FFT,输出Y(k),则根据DITFFT的思想及式(4.2.7)和(4.2.8),可得到第七十页,本课件共有71页 由于x(n)为实序列,所以X(k)具有共轭对称性,X(k)的另外N/2点的值为 第七十一页,本课件共有71页