《因式分解的其他常用方法.ppt》由会员分享,可在线阅读,更多相关《因式分解的其他常用方法.ppt(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、知识结构知识结构因式分解因式分解常用方法常用方法提公因式法提公因式法公式法公式法十字相乘法十字相乘法分组分解法分组分解法拆项添项法拆项添项法配方法配方法待定系数法待定系数法求根法求根法一、提公因式法一、提公因式法 只需只需找到找到多项式中的多项式中的公因式公因式,然后用然后用原多项式除以公因式原多项式除以公因式,把所,把所得的商与公因式相乘即可。往往与得的商与公因式相乘即可。往往与其他方法结合起来用。其他方法结合起来用。提公因式法提公因式法随堂练习:随堂练习:1 1)15(15(mm n n)+13()+13(n n mm)2 2)4(4(x x+y y)+4()+4(x x33y y)二、公
2、式法二、公式法 只需发现多项式的只需发现多项式的特点特点,再,再将符合其形式的公式套进去即可将符合其形式的公式套进去即可完成因式分解,有时需和别的方完成因式分解,有时需和别的方法法结合结合或多种公式或多种公式结合结合。接下来是一些常用的乘法公接下来是一些常用的乘法公式,可以逆用进行因式分解。式,可以逆用进行因式分解。常用公式常用公式1、(a+b)(ab)=a2b2(平方差公式)平方差公式)2、(ab)2=a22ab+b2(完全平方公式)(完全平方公式)3、(a+b+c)2=a2+b2+c2+2ab+2ac+2bc4、a3+b3=(a+b)(a2ab+b2)及及 a3b3=(ab)(a2+ab+
3、b2)(立方和、差公式)(立方和、差公式)5、(a+b)3=a3+3a2b+3ab2+b3(完全立方和公式)(完全立方和公式)6、(x+p)(x+q)=x2+(p+q)x+pq7、x2+y2+z2+xy+xz+yz公式推导公式推导这是公式这是公式x2+y2+z2+xy+xz+yz的推导过程的推导过程绝对不要和绝对不要和x2+y2+z2+2xy+2xz+2yz联系在一起联系在一起公式法公式法随堂练习:随堂练习:1 1)(a a2 21010a a+25)(+25)(a a2 2 25)25)2 2)x x3 3+3+3x x2 2+3 3x x+1+1二、公式法二、公式法 只需发现多项式的只需发
4、现多项式的特点特点,再,再将符合其形式的公式套进去即可将符合其形式的公式套进去即可完成因式分解,有时需和别的方完成因式分解,有时需和别的方法法结合结合或多种公式或多种公式结合结合。三、十字相乘法三、十字相乘法前面出现了一个公式:前面出现了一个公式:前面出现了一个公式:前面出现了一个公式:(x+p)(x+q)=x2+(p+q)x+pq我们可以用它进行因式分解我们可以用它进行因式分解我们可以用它进行因式分解我们可以用它进行因式分解(适用于二次三项式)(适用于二次三项式)(适用于二次三项式)(适用于二次三项式)例例1:因式分解:因式分解x2+4x+3可以看出常数项可以看出常数项可以看出常数项可以看出
5、常数项 3=3=1 3而一次项系数而一次项系数而一次项系数而一次项系数 4=4=1+3原式原式原式原式=(=(x x+1)()(x x+3)暂且称为暂且称为暂且称为暂且称为p、q型因式分解型因式分解例例2:因式分解:因式分解x27x+10可以看出常数项可以看出常数项可以看出常数项可以看出常数项10=10=(2)(5)而一次项系数而一次项系数而一次项系数而一次项系数 7=7=(2)+(5)原式原式原式原式=(=(x x2)()(x x5)这个公式简单的说,这个公式简单的说,这个公式简单的说,这个公式简单的说,就是把常数项拆成两个数的乘积,就是把常数项拆成两个数的乘积,就是把常数项拆成两个数的乘积
6、,就是把常数项拆成两个数的乘积,而这两个数的和刚好等于一次项系数而这两个数的和刚好等于一次项系数而这两个数的和刚好等于一次项系数而这两个数的和刚好等于一次项系数十字相乘法十字相乘法随堂练习:随堂练习:1 1)a a2 266a a+5 2+5 2)a a2 2 5 5a a+6+63 3)x x2 2(2(2mm+1)+1)x x+mm2 2+mm22三、十字相乘法三、十字相乘法试因式分解试因式分解6x2+7x+2。这里就要用到这里就要用到这里就要用到这里就要用到十字相乘法十字相乘法(适用于二次三项式)(适用于二次三项式)。既然是二次式,就可以写成既然是二次式,就可以写成既然是二次式,就可以写
7、成既然是二次式,就可以写成(axax+b b)()(cxcx+d d)的形式。的形式。的形式。的形式。(axax+b b)()(cxcx+d d)=)=acx x2 2+(ad+bc)x x+bd 所所所所以,需要将以,需要将以,需要将以,需要将二次项系数二次项系数与与与与常数项常数项分别拆成分别拆成分别拆成分别拆成两个数的积,而这四个数中,两个数的积与另外两个数的积,而这四个数中,两个数的积与另外两个数的积,而这四个数中,两个数的积与另外两个数的积,而这四个数中,两个数的积与另外两个数的积之和刚好等于一次项系数,那么因式两个数的积之和刚好等于一次项系数,那么因式两个数的积之和刚好等于一次项系
8、数,那么因式两个数的积之和刚好等于一次项系数,那么因式分解就成功了。分解就成功了。分解就成功了。分解就成功了。=173 x2+11 x+106 x2+7 x+223124+3=76x2+7x+2=(2x+1)(3x+2)13522+15=1113255+63x2+11x+10=(x+2)(3x+5)=65 x2 6 xy 8 y2试因式分解试因式分解5x26xy8y2。这里仍然可以用这里仍然可以用这里仍然可以用这里仍然可以用十字相乘法十字相乘法。15244 105x26xy8y2=(x2y)(5x+4y)简记口诀:简记口诀:首尾分解,首尾分解,交叉相乘,交叉相乘,求和凑中。求和凑中。十字相乘法
9、十字相乘法随堂练习:随堂练习:1 1)4 4a a2 299a a+2+22 2)7 7a a2 21919a a663 3)2(2(x x2 2+y y2 2)+5)+5xyxy四、分组分解法四、分组分解法 要发现式中隐含的条件,通要发现式中隐含的条件,通过交换项的位置,添、去括号等过交换项的位置,添、去括号等一些一些变换变换达到因式分解的目的。达到因式分解的目的。例例1:因式分解:因式分解 abac+bdcd。解:原式解:原式=(ab ac)+(bd cd)=a(b c)+d(b c)=(a+d)(b c)还有别还有别的解法的解法吗?吗?四、分组分解法四、分组分解法 要发现式中隐含的条件,
10、通要发现式中隐含的条件,通过交换项的位置,添、去括号等过交换项的位置,添、去括号等一些一些变换变换达到因式分解的目的。达到因式分解的目的。例例1:因式分解:因式分解 abac+bdcd。解:原式解:原式=(ab+bd)(ac+cd)=b(a+d)c(a+d)=(a+d)(b c)例例2:因式分解:因式分解 x5+x4+x3+x2+x+1。解:原式解:原式=(x5+x4+x3)+(x2+x+1)=(x3+1)(x2+x+1)=(x+1)(x2x+1)(x2+x+1)立方和公式立方和公式分组分解法分组分解法随堂练习:随堂练习:1 1)xyxy xzxz y y2 2+2+2yzyz z z2 22
11、 2)a a2 2 b b2 2 c c2 222bcbc22a a+1+1回顾例题:回顾例题:因式分解因式分解 x5+x4+x3+x2+x+1。另解:原式另解:原式=(x5+x4)+(x3+x2)+(x+1)=(x+1)(x4+x2+1)=(x+1)(x4+2x2+1x2)=(x+1)(x2+1)2x2 =(x+1)(x2+x+1)(x2x+1)五五*、拆项添项法、拆项添项法怎么结果怎么结果与刚才不与刚才不一样呢?一样呢?因为它还因为它还可以继续可以继续因式分解因式分解 拆项添项法对数学能力有着更拆项添项法对数学能力有着更高的要求,需要观察到多项式中应高的要求,需要观察到多项式中应拆哪一项使
12、得接下来可以继续因式拆哪一项使得接下来可以继续因式分解,要对结果有一定的分解,要对结果有一定的预见性预见性,尝试较多,做题较繁琐。尝试较多,做题较繁琐。最好能根据现有多项式内的项最好能根据现有多项式内的项猜测猜测可能需要使用的公式,有时要可能需要使用的公式,有时要根据形式根据形式猜测猜测可能的系数。可能的系数。五五*、拆项添项法、拆项添项法因式分解因式分解 x4+4解:原式解:原式=x4+4x2+4 4x2 =(x2+2)2 (2x)2 =(x2+2x+2)(x22x+2)都是平方项都是平方项猜测使用完全平方公式猜测使用完全平方公式完全平方公式完全平方公式平方差公式平方差公式拆项添项法拆项添项
13、法随堂练习:随堂练习:1 1)x x4 42323x x2 2y y2 2+y y4 42 2)(mm2 21)(1)(n n2 21)+41)+4mnmn配方法配方法 配方法是一种特殊的拆项添项配方法是一种特殊的拆项添项法,将多项式法,将多项式配成完全平方式配成完全平方式,再,再用平方差公式进行分解。用平方差公式进行分解。因式分解因式分解 a2b2+4a+2b+3。解:原式解:原式=(a2+4a+4)(b22b+1)=(a+2)2 (b1)2 =(a+b+1)(ab+3)配方法配方法 (拆项添项法拆项添项法)分组分解法分组分解法完全平方公式完全平方公式平方差公式平方差公式六六*、待定系数法、
14、待定系数法试因式分解试因式分解 2x2+3xy9y2+14x3y+20。通过十字相乘法得到通过十字相乘法得到通过十字相乘法得到通过十字相乘法得到 (2(2x x33y y)()(x x+3+3y y)设原式等于设原式等于(2x3y+a)(x+3y+b)通过比较两式同类项的系数可得:通过比较两式同类项的系数可得:通过比较两式同类项的系数可得:通过比较两式同类项的系数可得:解得:解得:解得:解得:,原式原式原式原式 =(2=(2x x33y y+4)(+4)(x x+3+3y y+5)+5)=3=1410+42 x2+3 xy 9 y2+14 x 3 y+20双十字相乘法双十字相乘法 双十字相乘法
15、适用于双十字相乘法适用于二次六项式二次六项式的因式分解,而待定系数法则没有这的因式分解,而待定系数法则没有这个限制。个限制。因式分解因式分解 2x2+3xy9y2+14x3y+20。21336 345=312 15原式原式原式原式 =(2x x3y y+4)()(x x+3y y+5)七七*、求根法、求根法 设原多项式等于零,解出方程设原多项式等于零,解出方程的解的解 x1、x2,则原式就可以分,则原式就可以分解为解为(xx1)(xx2)(xx3)更多的方法需要同学们自己去寻找更多的方法需要同学们自己去寻找!多练才能拥有自己的解题智慧多练才能拥有自己的解题智慧!综综合合训训练练(一一)综合训练综合训练(二二)2、x2yy2z+z2xx2z+y2x+z2y2xyz因式因式分解分解后的结果是后的结果是()()。A.(A.(y y z z)()(x x+y y)()(x x z z)B.()B.(y y z z)()(x x y y)()(x x+z z)C.(C.(y y+z z)()(x x y y)()(x x+z z)D.()D.(y y+z z)()(x x+y y)()(x x z z)3、因式分解、因式分解 x3 11x2+31x 21。综合训练综合训练(三三)