《灰色预测模型王冰》PPT课件.ppt

上传人:赵** 文档编号:65324281 上传时间:2022-12-04 格式:PPT 页数:82 大小:5.78MB
返回 下载 相关 举报
《灰色预测模型王冰》PPT课件.ppt_第1页
第1页 / 共82页
《灰色预测模型王冰》PPT课件.ppt_第2页
第2页 / 共82页
点击查看更多>>
资源描述

《《灰色预测模型王冰》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《灰色预测模型王冰》PPT课件.ppt(82页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、灰色预测模型及其应用洛阳理工学院数理部 灰色预测模型灰色预测模型(Gray Forecast Model)是通过少是通过少量的、不完全的信息,建立数学模型并做出预测量的、不完全的信息,建立数学模型并做出预测的一种预测方法的一种预测方法.当我们应用运筹学的思想方法解当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测题的决策时,都必须对未来进行科学的预测.预预测是根据客观事物的过去和现在的发展规律,借测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行助于科学的方法对

2、其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断描述和分析,并形成科学的假设和判断.l灰色系统理论是研究解决灰色系统分析、建模、灰色系统理论是研究解决灰色系统分析、建模、预测、决策和控制的理论预测、决策和控制的理论.灰色预测是对灰色系统灰色预测是对灰色系统所做的预测所做的预测.目前常用的一些预测方法(如回归分目前常用的一些预测方法(如回归分析等),需要较大的样本析等),需要较大的样本.若样本较小,常造成较若样本较小,常造成较大误差,使预测目标失效大误差,使预测目标失效.灰色预测模型所需建模灰色预测模型所需建模信息少,运算方便,建模精度高,在各种预测领信息少,运算方便,建模精度高,在

3、各种预测领域都有着广泛的应用,域都有着广泛的应用,是处理小样本预测问题的是处理小样本预测问题的有效工具有效工具.1 灰色系统的定义和特点灰色系统的定义和特点2灰色系统的模型灰色系统的模型3Sars 疫情疫情 4 销售额预测销售额预测5 城市道路交通事故次数的灰色预测城市道路交通事故次数的灰色预测6 城市火灾发生次数的灰色预测城市火灾发生次数的灰色预测7灾变与异常值预测灾变与异常值预测1 灰色系统的定义和特点灰色系统的定义和特点灰色系统的定义和特点 灰色系统理论是由灰色系统理论是由华中理工大学邓聚龙教授华中理工大学邓聚龙教授于于19821982年提出并加以发展的。二十几年来,引起了不年提出并加以

4、发展的。二十几年来,引起了不少国内外学者的关注,得到了长足的发展。目前,少国内外学者的关注,得到了长足的发展。目前,在我国已经成为社会、经济、科学技术在等诸多领在我国已经成为社会、经济、科学技术在等诸多领域进行预测、决策、评估、规划控制、系统分析与域进行预测、决策、评估、规划控制、系统分析与建模的重要方法之一。建模的重要方法之一。特别是它对时间序列短、统特别是它对时间序列短、统计数据少、信息不完全系统的分析与建模,具有独计数据少、信息不完全系统的分析与建模,具有独特的功效,因此得到了广泛的应用特的功效,因此得到了广泛的应用.在这里我们将简在这里我们将简要地介绍灰色建模与预测的方法要地介绍灰色建

5、模与预测的方法.一、灰色系统的定义和特点1.1.灰色系统的定义灰色系统的定义 灰色系统是黑箱概念的一种推广。我们把既含有已知信息又含有未知信息的系统称为灰色系统.作为两个极端,我们将称信息完全未确定的系统为黑色系统;称信息完全确定的系统为白色系统.区别白色系统与黑色系统的重要标志是系统各因素之间是否具有确定的关系。1灰色系统的定义和特点2.灰色系统的特点灰色系统的特点(1)用灰色数学处理不确定量,使之量化.(2)充分利用已知信息寻求系统的运动规律.(3)灰色系统理论能处理贫信息系统.1灰色系统的定义和特点常用的灰色预测有五种:(1)数数列列预测预测,即用观察到的反映预测对象特征的时间序列来,即

6、用观察到的反映预测对象特征的时间序列来构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。量的时间。(2)灾变与异常值预测灾变与异常值预测,即通过灰色模型预测异常值出现的时,即通过灰色模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。刻,预测异常值什么时候出现在特定时区内。(3)季节灾变与异常值预测季节灾变与异常值预测,即通过灰色模型预测灾变值发生,即通过灰色模型预测灾变值发生在一年内某个特定的时区或季节的灾变预测。在一年内某个特定的时区或季节的灾变预测。(4)拓扑预测拓扑预测,将原始数据作曲线,在曲线上按定

7、值寻找该定,将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测该定值所发生的时点。型预测该定值所发生的时点。(5)系统预测系统预测.通过对系统行为特征指标建立一组相互关联的灰通过对系统行为特征指标建立一组相互关联的灰色预测模型,预测系统中众多变量间的相互协调关系的变化。色预测模型,预测系统中众多变量间的相互协调关系的变化。2 灰色系统的模型灰色系统的模型 在灰色系统理论中,把一切随机变量都看作灰色数,即使在指定范围内变化的所有白色数的全体,对灰数处理主要是利用数据处理的方法去寻求数据

8、间的内在规律,通过对已知数据列中的数据进行处理而产生新的数据列,以此来研究寻求数据的规律性,这种方法称为数据的生成。常用的方法有:常用的方法有:累加生成累加生成累减生成累减生成均值生成均值生成1)累加生成 把数列各时刻数据依次累加的过程称为把数列各时刻数据依次累加的过程称为累加生累加生成过程成过程,记为,记为AGO,有累加生成过程所得到的新,有累加生成过程所得到的新数列称为数列称为累加生成数列。累加生成数列。设原始数列为设原始数列为 ,令,令 则称则称 为数列为数列 的的1次累加生成次累加生成,数,数列列 称为数列称为数列 的的1次累加生成数列次累加生成数列。类似有。类似有称之为称之为 的的r

9、次累加生成次累加生成,记,记 称之为称之为 的的r次累加生成数列次累加生成数列2)累减生成 对于原始数据列依次做前后相邻的两个数据对于原始数据列依次做前后相邻的两个数据相减的运算过程称为相减的运算过程称为累减生成过程累减生成过程,记为,记为IAGO,设原始数列为设原始数列为 ,令,令则称则称 为数列为数列 的的1次累减生成次累减生成 一般地,对于一般地,对于r次累加生成数列次累加生成数列则称则称为数列为数列 的的r次累减生成次累减生成2)累减生成3)均值生成设原始数列设原始数列则称则称 与与 为数列为数列 的邻值,的邻值,为后邻值,为后邻值,为前邻值。为前邻值。对于常数对于常数 ,则称,则称为

10、有数列为有数列 的邻值在生成系数(权)的邻值在生成系数(权)下的下的邻值生成数邻值生成数特别地,当生成系数特别地,当生成系数 时则称时则称为为邻均值生成数邻均值生成数,即,即等权邻值生成数等权邻值生成数2 灰色系统的模型 通过下面的数据分析、处理过程,我们将了解到,有通过下面的数据分析、处理过程,我们将了解到,有了一个时间数据序列后,如何建立一个基于模型的灰色了一个时间数据序列后,如何建立一个基于模型的灰色预测。预测。1.1.数据的预处理数据的预处理 首先我们从一个简单例子来考察问题首先我们从一个简单例子来考察问题.【例例7.17.1】设原始数据序列设原始数据序列7.2 灰色系统的模型对数据累

11、加 于是得到一个新数据序列7.2 灰色系统的模型 归纳上面的式子可写为归纳上面的式子可写为 称此式所表示的数据列为原始数据列的一次累加生成称此式所表示的数据列为原始数据列的一次累加生成,简称为,简称为一次累加生成一次累加生成.显然有显然有 将上述例子中的 分别做成图7.1、图7.2.可见图7.1上的曲线有明显的摆动,图7.2呈现逐渐递增的形式,说明原始数据的起伏已显著弱化.可以设想用一条指数曲线乃至一条直线来逼近累加生成数列 7.2 灰色系统的模型图7.2 图7.1为了把累加数据列还原为原始数列,需进行后减运算或称相减生成,它是指后前两个数据之差,如上例中7.2 灰色系统的模型归纳上面的式子得

12、到如下结果:一次后减其中白化定义7.2 灰色系统的模型3.3.精度检验精度检验 (1)(1)残差检验:分别计算残差检验:分别计算7.2 灰色系统的模型l(3 3)预测精度等级对照表,见表)预测精度等级对照表,见表7.1.7.1.7.2 灰色系统的模型l注:注:由于模型是基于一阶常微分方程建立的,故称为一阶由于模型是基于一阶常微分方程建立的,故称为一阶一元灰色模型,记为一元灰色模型,记为GM(1,1).GM(1,1).须指出的是,须指出的是,建模时先要建模时先要作一次累加,因此要求原始数据均为非负数作一次累加,因此要求原始数据均为非负数.否则,累加否则,累加时会正负抵消,达不到使数据序列随时间递

13、增的目的时会正负抵消,达不到使数据序列随时间递增的目的.如如果实际问题的原始数据列出现负数,可对原始数据列进行果实际问题的原始数据列出现负数,可对原始数据列进行“数据整体提升数据整体提升”处理处理.l注意到一阶常微分方程是导出注意到一阶常微分方程是导出GM(1,1)GM(1,1)模型的桥梁,在我模型的桥梁,在我们应用们应用GM(1,1)GM(1,1)模型于实际问题预测时,不必求解一阶常模型于实际问题预测时,不必求解一阶常微分方程。微分方程。7.2 灰色系统的模型4.GM(1,1)4.GM(1,1)的建模步骤 综上所述,综上所述,GM(1,1)GM(1,1)的建模步骤如下:的建模步骤如下:销售额

14、预测销售额预测7.3 销售额预测 随着生产的发展、消费的扩大,市场需求通常总是随着生产的发展、消费的扩大,市场需求通常总是增加的,一个商店、一个地区的销售额常常呈增长趋增加的,一个商店、一个地区的销售额常常呈增长趋势势.因此,这些数据符合建立灰色预测模型的要求。因此,这些数据符合建立灰色预测模型的要求。【例7.2】表7.2列出了某公司19992003年逐年的销 售额.试用建立预测模型,预测2004年的销售额,要求作精度检验。7.3 销售额预测 表表7.2 7.2 逐年销售额(百万元)逐年销售额(百万元)年份年份1999199920002000200120012002200220032003 序

15、号序号1 12 23 34 45 5 2.8742.8743.2783.2783.3373.3373.3903.3903.6793.679【例7.2】表7.2列出了某公司19992003年逐年的销 售额.试用建立预测模型,预测2004年的销售额,要求作精度检验。7.3 销售额预测 解(解(1 1)由原始数据列计算一次累加序列)由原始数据列计算一次累加序列 ,结,结果见表果见表7.3.7.3.表表7.3 7.3 一次累加数据一次累加数据年份年份1999199920002000200120012002200220032003序号序号1 12 23 34 45 52.8742.8743.2783.2

16、783.3373.3373.3903.3903.6793.6792.8742.8746.1526.1529.4899.48912.87912.87916.55816.5587.3 销售额预测(2 2)建立矩阵:)建立矩阵:7.3 销售额预测7.3 销售额预测7.3 销售额预测7.3 销售额预测7.3 销售额预测下面我们用用下面我们用用GMGM预测软件求解例预测软件求解例7.2.7.2.参考参考附录附录B B l(1 1)调用)调用GMGM预测软件预测软件.见图见图7.3.7.3.图7.3 7.3 销售额预测l(2 2)在)在“文件文件”菜单中打开菜单中打开“新建问题新建问题”,见到数据输,见到

17、数据输入界面入界面.见图见图7.4.7.4.7.3 销售额预测l(3 3)输入题目名称及元素个数)输入题目名称及元素个数后,点击后,点击“下一步下一步”键,键,得到原始数据序列得到原始数据序列 的输入表格.见图7.5.7.3 销售额预测l(4 4)点击)点击“运行运行”键键,输出分析数据如下:,输出分析数据如下:l题目题目:123:123l原始数列原始数列(5(5个个):2.874):2.874,3.2783.278,3.3373.337,3.393.39,3.6793.679l预测结果如下预测结果如下:1dx/dt+ax=u1dx/dt+ax=u:a=-0.03720438a=-0.0372

18、0438,u=3.06536331u=3.0653633122时间响应方程:时间响应方程:X(k+1)=85.2665*exp(0.0372k)-82.3925X(k+1)=85.2665*exp(0.0372k)-82.392533残差残差E(kE(k):(1)0.00000000 (2)0.04596109(1)0.00000000 (2)0.04596109 (3)-0.01754976(4)-0.09170440 (5)0.06532115 (3)-0.01754976(4)-0.09170440 (5)0.06532115 44第一次累加值第一次累加值:(1)2.874000 (2)

19、6.152000:(1)2.874000 (2)6.152000 (3)9.489000 (4)12.879000 (5)16.558000 (3)9.489000 (4)12.879000 (5)16.558000 55相对残差相对残差e(ke(k):(1)0.00000000 (2)0.01402108(1)0.00000000 (2)0.01402108 (3)-0.00525914(4)-0.02705145 (5)0.01775514(3)-0.00525914(4)-0.02705145 (5)0.01775514 7.3 销售额预测66原数据均值原数据均值avg(xavg(x):

20、3.31160000 3.31160000 77原数据方差原数据方差 S(1)S(1):0.258610600.2586106088残差的均值残差的均值avg(Eavg(E):0.000507020.0005070299残差的方差残差的方差 S(2)S(2):0.061432760.061432761010后验差比值后验差比值:C:C:0.237549280.237549281111小误差概率小误差概率 P P:1.000000001.000000001212模型计算值模型计算值X(kX(k):(1)2.87400000 (2)3.23203891(1)2.87400000 (2)3.2320

21、3891 (3)3.35454976 (4)3.48170440 (5)3.61367885 (3)3.35454976 (4)3.48170440 (5)3.61367885 1313预测的结果预测的结果X*(k)X*(k):(1)3.75065581 (2)3.89282490(1)3.75065581 (2)3.89282490 (3)4.04038293 (4)4.19353416 (5)4.35249061 (3)4.04038293 (4)4.19353416 (5)4.35249061 (6)4.51747233 (6)4.51747233 l预测精度等级:好!预测精度等级:好!

22、7.4 城市道路交通事故次数城市道路交通事故次数 的灰色预测的灰色预测 7.4 城市道路交通事故次数的灰色预测l灰色理论以灰色理论以“部分信息已知、部分信息未知部分信息已知、部分信息未知”的的“小样本小样本”、“贫信息贫信息”的不确定问题为研究对象的不确定问题为研究对象,通过对通过对“部分部分”已知的信息的生成开发已知的信息的生成开发,提取有价值的信息提取有价值的信息,构造生成序构造生成序列的手段来寻求现实现象中存在的规律。列的手段来寻求现实现象中存在的规律。l交通事故作为一个随机事件交通事故作为一个随机事件,其本身具有相当大的偶然性其本身具有相当大的偶然性和模糊性和模糊性,如果把某地区的道路

23、交通作为一个系统来看,如果把某地区的道路交通作为一个系统来看,则此系统中存在着一些确定因素则此系统中存在着一些确定因素(灰色系统称为白色信息灰色系统称为白色信息),如道路状况、信号标志如道路状况、信号标志,同时也存在一些不确定因素同时也存在一些不确定因素(灰灰色系统称为灰色信息色系统称为灰色信息)如车辆状况、气候因素、驾驶员心如车辆状况、气候因素、驾驶员心理状态等等理状态等等,具有明显的不确定性特征。具有明显的不确定性特征。l因此可以认为一个地区的道路交通安全系统是一个灰色系因此可以认为一个地区的道路交通安全系统是一个灰色系统统,可以利用灰色系统理论进行研究。可以利用灰色系统理论进行研究。7.

24、4 城市道路交通事故次数的灰色预测【例例7.37.3】某市某市20042004年年1-61-6月的交通事故次数统计见表月的交通事故次数统计见表7.5.7.5.试试建立灰色预测模型建立灰色预测模型.表表7.5 7.5 交通事故次数统计交通事故次数统计解解 利用利用GMGM预测软件计算,输出分析数据如下:预测软件计算,输出分析数据如下:l原始数列原始数列(元素共元素共6 6个个):83):83,9595,130130,141141,156156,185185l预测结果如下:预测结果如下:7.4 城市道路交通事故次数的灰色预测1dx/dt+ax=u1dx/dt+ax=u:a=-0.14401015a

25、=-0.14401015,u=84.47278810u=84.4727881022时间响应方程:时间响应方程:X(k+1)=669.5752*exp(0.1440k)-586.5752X(k+1)=669.5752*exp(0.1440k)-586.575233残差残差 E(kE(k):(1)0.00000000(2)-8.71441263(1)0.00000000(2)-8.71441263 (3)10.22065739(4)2.66733676 (3)10.22065739(4)2.66733676 (5)-3.75981586(6)0.49405494 (5)-3.75981586(6)

26、0.49405494 44第一次累加值第一次累加值:(1)83.000000(2)178.000000 :(1)83.000000(2)178.000000 (3)308.000000(4)449.00000(5)605.000000 (3)308.000000(4)449.00000(5)605.000000 (6)790.000000(6)790.000000 55相对残差相对残差e(ke(k):(1)0.00000000(2)-0.09173066(1)0.00000000(2)-0.09173066(3)0.07862044 (4)0.01891728(5)-0.02410138(6)

27、(3)0.07862044 (4)0.01891728(5)-0.02410138(6)0.002670570.00267057 7.4 城市道路交通事故次数的灰色预测66原数据均值原数据均值avg(xavg(x):131.66666667131.6666666777原数据方差原数据方差 S(1)S(1):34.7355085734.7355085788残差的均值残差的均值avg(Eavg(E):0.181564120.1815641299残差的方差残差的方差 S(2)S(2):6.351897176.351897171010后验差比值后验差比值 C C:0.182864670.1828646

28、71111小误差概率小误差概率 P P:1.000000001.000000001212模型计算值模型计算值X(kX(k):(1)83.00000000(2)103.71441263(1)83.00000000(2)103.71441263(3)119.77934261 (4)138.33266324(5)159.75981586(6)(3)119.77934261 (4)138.33266324(5)159.75981586(6)184.50594506 184.50594506 1313预测的结果预测的结果X*(k)X*(k):(1)213.08514646(2)246.09114698(

29、1)213.08514646(2)246.09114698(3)284.20963932 (4)328.23252716(5)379.07437672(6)(3)284.20963932 (4)328.23252716(5)379.07437672(6)437.79141674(7)505.60348139 437.79141674(7)505.60348139 l预测精度等级:预测精度等级:好!好!l这表明:如果该市不采取更有效的管制措施,这表明:如果该市不采取更有效的管制措施,7 7月的交通事故月的交通事故次数将上升至次数将上升至213213次次.7.5 城市火灾发生次数城市火灾发生次数

30、的灰色预测的灰色预测7.5 城市火灾发生次数的灰色预测【例例7.47.4】某市某市2001200520012005年火灾的统计数据见表年火灾的统计数据见表7.7.7.7.试建立模型,并对该市试建立模型,并对该市20062006年的火灾发生状年的火灾发生状况做出预测。况做出预测。表表7.7 7.7 某市某市2001200120052005年火灾数据年火灾数据年份年份2001200120022002200320032004200420052005 火灾火灾(起起)878797971201201661661611617.5 城市火灾发生次数的灰色预测解解 利用利用GMGM预测软件计算,输出分析数据如

31、下:预测软件计算,输出分析数据如下:原始数列原始数列(元素共元素共5 5个个):87):87,9797,120120,166166,161161预测结果如下:预测结果如下:1dx/dt+ax=u:a=-0.16668512,u=81.118924332时间响应方程:X(k+1)=573.6597*exp(0.1667k)-486.65973残差 E(k):(1)0.00000000 (2)-7.05165921 (3)-2.92477940(4)20.77885211(5)-10.56168104 7.5 城市火灾发生次数的灰色预测4 4 第一次累加值第一次累加值:(1)87.000000 (

32、2)184.000000 (3)304.000000 :(1)87.000000 (2)184.000000 (3)304.000000 (4)470.000000 (5)631.000000 (4)470.000000 (5)631.000000 5 5 相对残差相对残差e(ke(k):(1)0.00000000 (2)-0.07269752 (3)-0.02437316(1)0.00000000 (2)-0.07269752 (3)-0.02437316 (4)0.12517381 (5)-0.06560050 (4)0.12517381 (5)-0.06560050 6 6 原数据均值原

33、数据均值avg(xavg(x):126.20000000126.200000007 7 原数据方差原数据方差 S(1)S(1):32.3196534632.319653468 8 残差的均值残差的均值avg(Eavg(E):0.060183120.060183129 9 残差的方差残差的方差 S(2)S(2):12.2635185112.2635185110 10 后验差比值后验差比值 C C:0.379444620.3794446211 11 小误差概率小误差概率 P P:1.000000001.0000000012 12 模型计算值模型计算值X(kX(k):(1)87.00000000 (

34、2)104.05165921 (1)87.00000000 (2)104.05165921 (3)122.92477940 (4)145.22114789 (5)171.56168104 (3)122.92477940 (4)145.22114789 (5)171.56168104 13 13 预测的结果预测的结果X*(k)X*(k):(1)202.67991837(2)239.44245045 (1)202.67991837(2)239.44245045 (3)282.87305194 (4)334.18119203 (5)394.79571611(6)466.40463669 (3)282

35、.87305194 (4)334.18119203 (5)394.79571611(6)466.40463669 n预测精度等级:预测精度等级:合格!合格!n结果表明:如果该市不采取更有效的防火措施,结果表明:如果该市不采取更有效的防火措施,20062006年的火灾事故次数约为年的火灾事故次数约为 203 次次.7.6 灾变与异常值预测灾变与异常值预测7.6 灾变与异常值预测l灰色灾变与异常值预测指运用灰色动态模型,对系灰色灾变与异常值预测指运用灰色动态模型,对系统变化过程中某个异常数值在未来什么时间还会出统变化过程中某个异常数值在未来什么时间还会出现进行的预测现进行的预测.l由于这个异常值的

36、出现经常对人类产生不利的影响,由于这个异常值的出现经常对人类产生不利的影响,即造成灾害,如:某年降雨量低于即造成灾害,如:某年降雨量低于300mm,300mm,便形成旱便形成旱灾,使粮食生产歉收;某年发生蝗灾,农作物就要灾,使粮食生产歉收;某年发生蝗灾,农作物就要减产;破坏性地震、特大洪水、台风与海啸等自然减产;破坏性地震、特大洪水、台风与海啸等自然灾害的发生,更是给人们的生活和生产带来巨大的灾害的发生,更是给人们的生活和生产带来巨大的损失损失.l因此,对这一类事件发生的时间和程度进行预报,因此,对这一类事件发生的时间和程度进行预报,是很有实际意义的是很有实际意义的.7.6 灾变与异常值预测1

37、.1.灾变预的数学原理与特征灾变预的数学原理与特征 灾变预测与数据预测的不同点,在于它不是预灾变预测与数据预测的不同点,在于它不是预测序列数据的量的变化,而是预测异常值或测序列数据的量的变化,而是预测异常值或“灾灾变变”点出现的时间,它是应用灰色区间(间隔)点出现的时间,它是应用灰色区间(间隔)的预测而进行的。所以,灾变预测的基本要求是的预测而进行的。所以,灾变预测的基本要求是“定量求时定量求时”。灾变预测的数学原理描述如下:。灾变预测的数学原理描述如下:7.6 灾变与异常值预测7.6 灾变与异常值预测7.6 灾变与异常值预测3.3.实际问题实际问题旱灾预测旱灾预测l【例例7.57.5】某地年

38、降水量原始数据序列如表某地年降水量原始数据序列如表7.97.9所所示,根据多年的时间观测,每当年降水量小于示,根据多年的时间观测,每当年降水量小于430430440mm440mm时,该地区将发生旱灾时,该地区将发生旱灾.所以,选择阈值所以,选择阈值=435mm,=435mm,利用利用GM(1,1)GM(1,1)模型进行旱灾预报模型进行旱灾预报.7.6 灾变与异常值预测表7.9 某地年降水量(mm)原始数据7.6 灾变与异常值预测7.6 灾变与异常值预测7.6 灾变与异常值预测7.1 灰色系统的定义和特点灰色系统的定义和特点7.2 灰色系统的模型灰色系统的模型7.3 销售额预测销售额预测7.4 城市道路交通事故次数的灰色预测城市道路交通事故次数的灰色预测7.5 城市火灾发生次数的灰色预测城市火灾发生次数的灰色预测7.6 灾变与异常值预测灾变与异常值预测本章内容回顾本章内容回顾

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁