第1章 数字电子技术基础精.ppt

上传人:石*** 文档编号:65261656 上传时间:2022-12-04 格式:PPT 页数:134 大小:6.66MB
返回 下载 相关 举报
第1章 数字电子技术基础精.ppt_第1页
第1页 / 共134页
第1章 数字电子技术基础精.ppt_第2页
第2页 / 共134页
点击查看更多>>
资源描述

《第1章 数字电子技术基础精.ppt》由会员分享,可在线阅读,更多相关《第1章 数字电子技术基础精.ppt(134页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第1章 数字电子技术基础第1页,本讲稿共134页第第第第1 1章章章章 数字电路基础数字电路基础数字电路基础数字电路基础学习要点:学习要点:逻辑代数的运算规则 逻辑函数的卡诺图描述方法 逻辑函数的化简第2页,本讲稿共134页第第第第1 1章章章章 数字电路基础数字电路基础数字电路基础数字电路基础1.1 1.1 数字电子技术概述数字电子技术概述数字电子技术概述数字电子技术概述1.2 1.2 数制与编码数制与编码数制与编码数制与编码1.3 1.3 逻辑代数运算逻辑代数运算逻辑代数运算逻辑代数运算1.4 1.4 逻辑函数的描述逻辑函数的描述逻辑函数的描述逻辑函数的描述1.5 1.5 逻辑函数的化简逻

2、辑函数的化简逻辑函数的化简逻辑函数的化简退出退出退出退出第3页,本讲稿共134页1.1 数字电子技术概述数字电子技术概述1.1.1 1.1.1 数字电子技术的基本概念数字电子技术的基本概念数字电子技术的基本概念数字电子技术的基本概念1.1.2 1.1.2 数字集成电路的发展趋势数字集成电路的发展趋势数字集成电路的发展趋势数字集成电路的发展趋势退出退出退出退出第4页,本讲稿共134页电电子子电电路路中中的的信信号号模拟信号模拟信号数字信号数字信号在时间和数值上都是离散的信号在时间和数值上都是离散的信号1.1.1 数字电子技术的基本概念数字电子技术的基本概念数字电子技术的基本概念数字电子技术的基本

3、概念在时间上和数值上连续变化的信号在时间上和数值上连续变化的信号第5页,本讲稿共134页模拟信号:在时间上和数值上连续的信号。数字信号:在时间上和数值上不连续的(即离散的)信号。uu模拟信号波形数字信号波形tt对模拟信号进行传输、处理的电子线路称为模拟电路。对数字信号进行传输、处理的电子线路称为数字电路。第6页,本讲稿共134页 研究模拟信号时,我们注重电路输研究模拟信号时,我们注重电路输入、输出信号间的大小、相位关系。相入、输出信号间的大小、相位关系。相应的电子电路就是模拟电路,包括交直应的电子电路就是模拟电路,包括交直流放大器、滤波器、信号发生器等。流放大器、滤波器、信号发生器等。在模拟电

4、路中,晶体管一般工作在在模拟电路中,晶体管一般工作在放大状态。放大状态。第7页,本讲稿共134页数字信号:数字信号:数字信号数字信号产品数量的统计。产品数量的统计。数字表盘的读数。数字表盘的读数。数字电路信号:数字电路信号:tu第8页,本讲稿共134页研究数字电路时注重电路输出、输入间研究数字电路时注重电路输出、输入间的逻辑关系,因此不能采用模拟电路的的逻辑关系,因此不能采用模拟电路的分析方法。主要的分析工具是逻辑代数,分析方法。主要的分析工具是逻辑代数,电路的功能用真值表、逻辑表达式或波电路的功能用真值表、逻辑表达式或波形图表示。形图表示。在数字电路中,三极管工作在开关在数字电路中,三极管工

5、作在开关状态下,即工作在饱和状态或截止状态下,即工作在饱和状态或截止状态。状态。第9页,本讲稿共134页(1)工作信号是二进制的数字信号,在时间上和数值上是离散的(不连续),反映在电路上就是低电平和高电平两种状态(即0和1两个逻辑值)。(2)在数字电路中,研究的主要问题是电路的逻辑功能,即输入信号的状态和输出信号的状态之间的关系。(3)对组成数字电路的元器件的精度要求不高,只要在工作时能够可靠地区分0和1两种状态即可。1、数字电路的特点数字电路的特点数字电路的特点数字电路的特点第10页,本讲稿共134页2、数字电路的分类、数字电路的分类(2)按所用器件制作工艺的不同:数字电路可分为双极型(TT

6、L型)和单极型(MOS型)两类。(3)按照电路的结构和工作原理的不同:数字电路可分为组合逻辑电路和时序逻辑电路两类。组合逻辑电路没有记忆功能,其输出信号只与当时的输入信号有关,而与电路以前的状态无关。时序逻辑电路具有记忆功能,其输出信号不仅和当时的输入信号有关,而且与电路以前的状态有关。(1)按集成度分类:数字电路可分为小规模(SSI,每片数十器件)、中规模(MSI,每片数百器件)、大规模(LSI,每片数千器件)和超大规模(VLSI,每片器件数目大于1万)数字集成电路。集成电路从应用的角度又可分为通用型和专用型两大类型。第11页,本讲稿共134页1.1.2 数字集成电路的发展趋势数字集成电路的

7、发展趋势数字集成电路的发展趋势数字集成电路的发展趋势电子管半导体分立元件集成电路分立元件集成时代功能电路及模块集成时代系统芯片时代20世纪70年代20世纪80年代20世纪90年代第12页,本讲稿共134页本节小结数字信号的数值相对于时间的变化数字信号的数值相对于时间的变化过程是跳变的、间断性的。对数字信过程是跳变的、间断性的。对数字信号进行传输、处理的电子线路称为数号进行传输、处理的电子线路称为数字电路。模拟信号通过模数转换后变字电路。模拟信号通过模数转换后变成数字信号,即可用数字电路进行传成数字信号,即可用数字电路进行传输、处理。输、处理。第13页,本讲稿共134页1.2 数制与编码数制与编

8、码1.2.1 1.2.1 计数体制计数体制计数体制计数体制1.2.2 1.2.2 数制转换数制转换数制转换数制转换1.2.3 1.2.3 常用编码常用编码常用编码常用编码退出退出退出退出第14页,本讲稿共134页(1)进位制:表示数时,仅用一位数码往往不够用,必须用进位计数的方法组成多位数码。多位数码每一位的构成以及从低位到高位的进位规则称为进位计数制,简称进位制。1.2.1 计数体制计数体制(2)基 数:进位制的基数,就是在该进位制中可能用到的数码个数。(3)位 权(位的权数):在某一进位制的数中,每一位的大小都对应着该位上的数码乘上一个固定的数,这个固定的数就是这一位的权数。权数是一个幂。

9、第15页,本讲稿共134页数码为:09;基数是10。运算规律:逢十进一,即:9110。十进制数的权展开式:1、十进制、十进制103、102、101、100称为十进制的权。各数位的权是10的幂。同样的数码在不同的数位上代表的数值不同。任意一个十进制数都可以表示为各个数位上的数码与其对应的权的乘积之和,称权展开式。即:(5555)105103 510251015100又如:(209.04)10 2102 0101910001014 102第16页,本讲稿共134页 若在数字电路中采用十进制,必须要若在数字电路中采用十进制,必须要有十个电路状态与十个记数码相对应。这有十个电路状态与十个记数码相对应。

10、这样将在技术上带来许多困难,而且很不经样将在技术上带来许多困难,而且很不经济。济。缺点:第17页,本讲稿共134页2、二进制、二进制数码为:0、1;基数是2。运算规律:逢二进一,即:1110。二进制数的权展开式:如:(101.01)2 122 0211200211 22(5.25)10加法规则:0+0=0,0+1=1,1+0=1,1+1=10乘法规则:0.0=0,0.1=0,1.0=0,1.1=1运算运算规则规则各数位的权是的幂各数位的权是的幂二进制数只有0和1两个数码,它的每一位都可以用电子元件来实现,且运算规则简单,相应的运算电路也容易实现。第18页,本讲稿共134页用电路的两个状态用电路

11、的两个状态-开关来表示二开关来表示二进制数,数码的存储和传输简单、进制数,数码的存储和传输简单、可靠。可靠。位数较多,使用不便;不合人们的位数较多,使用不便;不合人们的习惯,输入时将十进制转换成二进习惯,输入时将十进制转换成二进制,运算结果输出时再转换成十进制,运算结果输出时再转换成十进制数。制数。第19页,本讲稿共134页数码为:07;基数是8。运算规律:逢八进一,即:7110。八进制数的权展开式:如:(207.04)8 282 0817800814 82 (135.0625)103、八进制、八进制4、十六进制、十六进制基数是16。运算规律:逢十六进一,即:F110。十六进制数的权展开式:如

12、:(D8.A)16 13161 816010 161(216.625)10各数位的权是各数位的权是8的幂的幂各数位的权是各数位的权是16的幂的幂1,2,3,4,5,6,7,8,9,A(10),B(11),C(12),D(13),E(14),F(15)数码为:第20页,本讲稿共134页结论结论一般地,N进制需要用到N个数码,基数是N;运算规律为逢N进一。由权展开式很容易将一个N进制数转换为十进制数。第21页,本讲稿共134页第22页,本讲稿共134页1.2.2 数制转换数制转换(1)二进制数转换为八进制数:将二进制数由小数点开始,整数部分向左,小数部分向右,每3位分成一组,不够3位补零,则每组二

13、进制数便是一位八进制数。将N进制数按权展开,即可以转换为十进制数。1、二进制数与八进制数的相互转换、二进制数与八进制数的相互转换1 1 0 1 0 1 0.0 10 00(152.2)8(2)八进制数转换为二进制数:将每位八进制数用3位二进制数表示。=011 111 100.010 110(374.26)8第23页,本讲稿共134页例:八进制与二进制之间的转换:例:八进制与二进制之间的转换:(10011100101101001000)B=从末位开从末位开始三位一始三位一组组(10 011 100 101 101 001 000)B=()O01554=(2345510)O32第24页,本讲稿共1

14、34页十六进制与二进制之间的转换:十六进制与二进制之间的转换:(10011100101101001000)B=从末位开始从末位开始 四位一组四位一组(1001 1100 1011 0100 1000)B=()H84BC9=(9CB48)H2、二进制数与十六进制数的相互转换、二进制数与十六进制数的相互转换第25页,本讲稿共134页1 1 1 0 1 0 1 0 0.0 1 10 0 00 (1D4.6)16=1010 1111 0100.0111 0110(AF4.76)16 二进制数与十六进制数的相互转换,按照每4位二进制数对应于一位十六进制数进行转换。3、十进制数转换为二进制数、十进制数转换

15、为二进制数采用的方法 基数连除、连乘法原理:将整数部分和小数部分分别进行转换。整数部分采用基数连除法,小数部分 采用基数连乘法。转换后再合并。例:第26页,本讲稿共134页整数部分:小数部分:所以:(44.375)10(101100.011)2采用基数连除、连乘法,可将十进制数转换为任意的N进制数。除2取余倒排序 乘2取整正排序第27页,本讲稿共134页225 余余 1 K0122 余余 0 K162 余余 0 K232 余余 1 K312 余余 1 K40转换过程:转换过程:(25)D=(11001)B例:第28页,本讲稿共134页 用一定位数的二进制数来表示十进制数码、字母、符号等信息称为

16、编码。用以表示十进制数码、字母、符号等信息的一定位数的二进制数称为代码。1.2.3 常用编码常用编码 数字系统只能识别0和1,怎样才能表示更多的数码、符号、字母呢?用编码可以解决此问题。二-十进制代码:用4位二进制数b3b2b1b0来表示十进制数中的 0 9 十个数码。简称BCD码。2421码的权值依次为2、4、2、1;余3码由8421码加0011得到;格雷码是一种循环码,其特点是任何相邻的两个码字,仅有一位代码不同,其它位相同。用四位自然二进制码中的前十个码字来表示十进制数码,因各位的权值依次为8、4、2、1,故称8421 BCD码。第29页,本讲稿共134页 用四位二进制数表示用四位二进制

17、数表示09十个数码,即十个数码,即为为BCD码码。四位二进制数最多可以有。四位二进制数最多可以有16种不种不同组合,不同的组合便形成了一种编码。主同组合,不同的组合便形成了一种编码。主要有:要有:8421码、码、5421码、码、2421码、余码、余3码等。码等。数字电路中编码的方式很多,常用的主要是二数字电路中编码的方式很多,常用的主要是二 十进制码(十进制码(BCD码)。码)。BCD-Binary-Coded-DecimalBCD码:码:第30页,本讲稿共134页第31页,本讲稿共134页本节小结日常生活中使用十进制,但在计算机中基本上日常生活中使用十进制,但在计算机中基本上使用二进制,有时

18、也使用八进制或十六进制。利用使用二进制,有时也使用八进制或十六进制。利用权展开式可将任意进制数转换为十进制数。将十进权展开式可将任意进制数转换为十进制数。将十进制数转换为其它进制数时,整数部分采用基数除法,制数转换为其它进制数时,整数部分采用基数除法,小数部分采用基数乘法。利用小数部分采用基数乘法。利用1位八进制数由位八进制数由3位二位二进制数构成,进制数构成,1 1位十六进制数由位十六进制数由4位二进制数构成,位二进制数构成,可以实现二进制数与八进制数以及二进制数与十可以实现二进制数与八进制数以及二进制数与十六进制数之间的相互转换。六进制数之间的相互转换。二二进进制制代代码码不不仅仅可可以以

19、表表示示数数值值,而而且且可可以以表表示示符符号号及及文文字字,使使信信息息交交换换灵灵活活方方便便。BCD码码是是用用4位位二二进进制制代代码码代代表表1 1位位十十进进制制数数的的编编码码,有有多多种种BCD码码形形式式,最常用的是最常用的是8421 BCD码。码。第32页,本讲稿共134页作业P20:1 2 3 第33页,本讲稿共134页1.3 1.3 逻辑代数运算逻辑代数运算1.3.1 1.3.1 逻辑代数的基本运算逻辑代数的基本运算逻辑代数的基本运算逻辑代数的基本运算1.3.2 1.3.2 逻辑代数的基本公式和运算规则逻辑代数的基本公式和运算规则逻辑代数的基本公式和运算规则逻辑代数的

20、基本公式和运算规则1.3.3 1.3.3 复合运算与常用逻辑门复合运算与常用逻辑门复合运算与常用逻辑门复合运算与常用逻辑门1.3.4 1.3.4 正逻辑与负逻辑正逻辑与负逻辑正逻辑与负逻辑正逻辑与负逻辑退出退出退出退出第34页,本讲稿共134页在数字电路中,我们要研究的是电路的输入输出之间的逻辑关系,所以数字电路又称逻辑电路,相应的研究工具是逻辑代数(布尔代数)。逻辑代数是按一定的逻辑关系进行运算的代数,是分析和设计数字电路的数学工具。在逻辑代数,只有和两种逻辑值,有与、或、非与、或、非与、或、非与、或、非三种基本逻辑运算,还有与或、与与或、与与或、与与或、与非、与或非、异或非、与或非、异或非

21、、与或非、异或非、与或非、异或几种导出逻辑运算。逻辑是指事物的因果关系,或者说条件和结果的关系,这些因果关系可以用逻辑运算来表示,也就是用逻辑代数来描述。第35页,本讲稿共134页事物往往存在两种对立的状态,在逻辑代数中可以抽象地表示为 0 和 1,称为逻辑0状态和逻辑1状态。逻辑代数中的变量称为逻辑变量,用大写字母表示。逻辑变量的取值只有两种,即逻辑0和逻辑1,0 和 1 称为逻辑常量,并不表示数量的大小,而是表示两种对立的逻辑状态。如电位的低高(0表示低电位,1表示高电位)、开关的开合等。第36页,本讲稿共134页1.3.1 基本逻辑运算基本逻辑运算1 1、与逻辑(与运算)、与逻辑(与运算

22、)与逻辑的定义:仅当决定事件(Y)发生的所有条件(A,B,C,)均满足时,事件(Y)才能发生。表达式为:开关A,B串联控制灯泡Y第37页,本讲稿共134页两个开关必须同时接通,灯两个开关必须同时接通,灯才亮。逻辑表达式为:才亮。逻辑表达式为:A、B都断开,灯不亮。都断开,灯不亮。A断开、断开、B接通,灯不亮。接通,灯不亮。A接通、接通、B断开,灯不亮。断开,灯不亮。A、B都接通,灯亮。都接通,灯亮。第38页,本讲稿共134页这种把所有可能的条件组合及其对应结果一一列出来的表格叫做真值表。将开关接通记作1,断开记作0;灯亮记作1,灯灭记作0。可以作出如下表格来描述与逻辑关系:功能表功能表实现与逻

23、辑的电路称为与门。与门的逻辑符号:真真值值表表逻辑符号逻辑符号第39页,本讲稿共134页2 2、或逻辑(或运算)、或逻辑(或运算)或逻辑的定义:当决定事件(Y)发生的各种条件(A,B,C,)中,只要有一个或多个条件具备,事件(Y)就发生。表达式为:开关A,B并联控制灯泡Y第40页,本讲稿共134页两个开关只要有一个接通,灯两个开关只要有一个接通,灯就会亮。逻辑表达式为:就会亮。逻辑表达式为:+A、B都断开,灯不亮。都断开,灯不亮。A断开、断开、B接通,灯亮。接通,灯亮。A接通、接通、B断开,灯亮。断开,灯亮。A、B都接通,灯亮。都接通,灯亮。第41页,本讲稿共134页实现或逻辑的电路称为或门。

24、或门的逻辑符号:Y=A+BY=A+B真值表真值表功能表功能表逻辑符号逻辑符号第42页,本讲稿共134页3 3、非逻辑(非运算)、非逻辑(非运算)非逻辑指的是逻辑的否定。当决定事件(Y)发生的条件(A)满足时,事件不发生;条件不满足,事件反而发生。表达式为:开关A控制灯泡Y第43页,本讲稿共134页实现非逻辑的电路称为非门。非门的逻辑符号:Y=AA断开,灯亮。断开,灯亮。A接通,灯灭。接通,灯灭。真真值值表表功功能能表表逻辑符号逻辑符号第44页,本讲稿共134页4 4、常用的逻辑运算、常用的逻辑运算(1)与非运算:逻辑表达式为:(2)或非运算:逻辑表达式为:第45页,本讲稿共134页(3)异或运

25、算:逻辑表达式为:(4)与或非运算:逻辑表达式为:第46页,本讲稿共134页5 5、逻辑函数及其相等概念、逻辑函数及其相等概念(1)逻辑表达式:由逻辑变量和与、或、非3种运算符连接起来所构成的式子。在逻辑表达式中,等式右边的字母A、B、C、D等称为输入逻辑变量,等式左边的字母Y称为输出逻辑变量,字母上面没有非运算符的叫做原变量,有非运算符的叫做反变量。(2)逻辑函数:如果对应于输入逻辑变量A、B、C、的每一组确定值,输出逻辑变量Y就有唯一确定的值,则称Y是A、B、C、的逻辑函数。记为注意注意注意注意:与普通代数不同的是,在逻辑代数中,不管是变量还是函数,其取值都只能是0或1,并且这里的0和1只

26、表示两种不同的状态,没有数量的含义。第47页,本讲稿共134页(3)逻辑函数相等的概念:设有两个逻辑函数它们的变量都是A、B、C、,如果对应于变量A、B、C、的任何一组变量取值,Y1和Y2的值都相同,则称Y1和Y2是相等的,记为Y1=Y2。若两个逻辑函数相等,则它们的真值表一定相同;反之,若两个函数的真值表完全相同,则这两个函数一定相等。因此,要证明两个逻辑函数是否相等,只要分别列出它们的真值表,看看它们的真值表是否相同即可。证明等式:第48页,本讲稿共134页1.3.2 逻辑代数的基本公式和运算规则逻辑代数的基本公式和运算规则1 1、逻辑代数的公式和定理逻辑代数的公式和定理(1)常量之间的关

27、系(2)基本定律分别令分别令A=0及及A=1代入这些公代入这些公式,即可证明它式,即可证明它们的正确性。们的正确性。第49页,本讲稿共134页(3)基本定理利用真值表很容易证利用真值表很容易证明这些公式的正确性。明这些公式的正确性。如证明如证明AB=BA:普通代普通代数不适数不适用用!第50页,本讲稿共134页(A+B)(A+C)=AA+AB+AC+BC分配率分配率A(B+C)=AB+ACA(B+C)=AB+AC=A+AB+AC+BC等幂率等幂率AA=AAA=A=A(1+B+C)+BC分配率分配率A(B+C)=AB+ACA(B+C)=AB+AC=A+BC0-10-1率率A+1=1A+1=1证明

28、分配率:A+BC=(A+B)(A+C)证明:证明:第51页,本讲稿共134页(4)常用公式分配率分配率A+BC=(A+B)(A+C)A+BC=(A+B)(A+C)互补率互补率A+A=1A+A=10-10-1率率A A1=11=1第52页,本讲稿共134页互补率互补率A+A=1A+A=1分配率分配率A(B+C)=AB+ACA(B+C)=AB+AC0-10-1率率A+1=1A+1=1第53页,本讲稿共134页例如,已知等式 ,用函数Y=AC代替等式中的A,根据代入规则,等式仍然成立,即有:2 2、逻辑代数运算的基本规则逻辑代数运算的基本规则(1)代入规则:任何一个含有变量A的等式,如果将所有出现A

29、的位置都用同一个逻辑函数代替,则等式仍然成立。这个规则称为代入规则。(2)反演规则:对于任何一个逻辑表达式Y,如果将表达式中的所有“”换成“”,“”换成“”,“0”换成“1”,“1”换成“0”,原原原原变变变变量量量量换换换换成成成成反反反反变变变变量量量量,反反反反变变变变量量量量换换换换成成成成原原原原变变变变量量量量,那么所得到的表达式就是函数Y的反函数Y(或称补函数)。这个规则称为反演规则。例如:第54页,本讲稿共134页(3)对偶规则:对于任何一个逻辑表达式Y,如果将表达式中的所有“”换成“”,“”换成“”,“0”换成“1”,“1”换成“0”,而变变变变量量量量保保保保持持持持不不不

30、不变变变变,则可得到的一个新的函数表达式Y,Y称为函Y的对偶函数。这个规则称为对偶规则。例如:对偶规则的意义在于:如果两个函数相等,则它们的对偶函数也相等。利用对偶规则,可以使要证明及要记忆的公式数目减少一半。例如:注意注意注意注意:在运用反演规则和对偶规则时,必须按照逻辑运算的优先顺序进行:先算括号,接着与运算,然后或运算,最后非运算,否则容易出错。第55页,本讲稿共134页本节小结逻辑代数是分析和设计数字电路的重要逻辑代数是分析和设计数字电路的重要工具。利用逻辑代数,可以把实际逻辑问题工具。利用逻辑代数,可以把实际逻辑问题抽象为逻辑函数来描述,并且可以用逻辑运抽象为逻辑函数来描述,并且可以

31、用逻辑运算的方法,解决逻辑电路的分析和设计问题。算的方法,解决逻辑电路的分析和设计问题。与与、或或、非非是是3 3种种基基本本逻逻辑辑关关系系,也也是是3 3种种基基本本逻逻辑辑运运算算。与与非非、或或非非、与与或或非非、异异或或则则是是由由与与、或或、非非3 3种种基基本本逻逻辑辑运运算算复复合合而成的而成的4 4种常用逻辑运算。种常用逻辑运算。逻逻辑辑代代数数的的公公式式和和定定理理是是推推演演、变变换换及化简逻辑函数的依据。及化简逻辑函数的依据。第56页,本讲稿共134页作业P20:6 第57页,本讲稿共134页1.3.3 逻辑函数的表达式逻辑函数的表达式一个逻辑函数的表达式可以有与或表

32、达式、或与表达式、与非-与非表达式、或非-或非表达式、与或非表达式5种表示形式。一种形式的函数表达式相应于一种逻辑电路。尽管一个逻辑函数表达式的各种表示形式不同,但逻辑功能是相同的。第58页,本讲稿共134页1 1、逻辑函数的最小项及其性质逻辑函数的最小项及其性质(1)最小项:如果一个函数的某个乘积项包含了函数的全部变量,其中每个变量都以原变量或反变量的形式出现,且仅出现一次,则这个乘积项称为该函数的一个标准积项,通常称为最小项。3个变量A、B、C可组成8个最小项:(2)最小项的表示方法:通常用符号mi来表示最小项。下标i的确定:把最小项中的原变量记为1,反变量记为0,当变量顺序确定后,可以按

33、顺序排列成一个二进制数,则与这个二进制数相对应的十进制数,就是这个最小项的下标i。3个变量A、B、C的8个最小项可以分别表示为:第59页,本讲稿共134页(3)最小项的性质:任意一个最小项,只有一组变量取值使其值为1。全部最小项的和必为1。ABCABC任意两个不同的最小项的乘积必为0。第60页,本讲稿共134页2 2、逻辑函数的最小项表达式逻辑函数的最小项表达式任何一个逻辑函数都可以表示成唯一的一组最小项之和,称为标准与或表达式,也称为最小项表达式对于不是最小项表达式的与或表达式,可利用公式AA1 和A(B+C)ABBC来配项展开成最小项表达式。第61页,本讲稿共134页如果列出了函数的真值表

34、,则只要将函数值为1的那些最小项相加,便是函数的最小项表达式。m1ABCm5ABCm3ABCm1ABC将真值表中函数值为0的那些最小项相加,便可得到反函数的最小项表达式。第62页,本讲稿共134页本节小结逻辑代数是分析和设计数字电路的重要逻辑代数是分析和设计数字电路的重要工具。利用逻辑代数,可以把实际逻辑问工具。利用逻辑代数,可以把实际逻辑问题抽象为逻辑函数来描述,并且可以用逻题抽象为逻辑函数来描述,并且可以用逻辑运算的方法,解决逻辑电路的分析和设辑运算的方法,解决逻辑电路的分析和设计问题。计问题。与与、或或、非非是是3 3种种基基本本逻逻辑辑关关系系,也也是是3 3种种基基本本逻逻辑辑运运算

35、算。与与非非、或或非非、与与或或非非、异异或或则则是是由由与与、或或、非非3 3种种基基本本逻逻辑辑运运算算复复合合而而成成的的4 4种常用逻辑运算。种常用逻辑运算。逻逻辑辑代代数数的的公公式式和和定定理理是是推推演演、变变换换及化简逻辑函数的依据。及化简逻辑函数的依据。第63页,本讲稿共134页1.4 1.4 逻辑函数的描述逻辑函数的描述1.4.1 1.4.1 逻辑函数的表示方法逻辑函数的表示方法逻辑函数的表示方法逻辑函数的表示方法1.4.2 1.4.2 逻辑函数表示方法之间的转换逻辑函数表示方法之间的转换逻辑函数表示方法之间的转换逻辑函数表示方法之间的转换退出退出退出退出第64页,本讲稿共

36、134页1.4.1 逻辑函数的表示方法逻辑函数的表示方法1 1、真值表真值表真值表:是由变量的所有可能取值组合及其对应的函数值所构成的表格。真值表列写方法:每一个变量均有0、1两种取值,n个变量共有2i种不同的取值,将这2i种不同的取值按顺序(一般按二进制递增规律)排列起来,同时在相应位置上填入函数的值,便可得到逻辑函数的真值表。例如:当A=B=1、或则B=C=1时,函数Y=1;否则Y=0。第65页,本讲稿共134页2 2、逻辑表达式逻辑表达式逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。函数的标准与或表达式的列写方法:将函数的真值表中那些使函数值为1的最小项相加,便得到

37、函数的标准与或表达式。3 3、卡诺图卡诺图卡诺图:是由表示变量的所有可能取值组合的小方格所构成的图形。逻辑函数卡诺图的填写方法:在那些使函数值为1的变量取值组合所对应的小方格内填入1,其余的方格内填入0,便得到该函数的卡诺图。第66页,本讲稿共134页4 4、逻辑图逻辑图逻辑图:是由表示逻辑运算的逻辑符号所构成的图形。、波形、波形图图波形图:是由输入变量的所有可能取值组合的高、低电平及其对应的输出函数值的高、低电平所构成的图形。第67页,本讲稿共134页1.4.2 逻辑函数表示方法之间的转换逻辑函数表示方法之间的转换1 1、由真值表到、由真值表到逻辑图的转换逻辑图的转换真值表真值表逻辑表逻辑表

38、达式或达式或卡诺图卡诺图 1 1 最简与或最简与或表达式表达式化简 2 或 2 第68页,本讲稿共134页&画逻辑图画逻辑图 3&1ABCA最简与或最简与或表达式表达式&CBBAACABACYACBBAACY&ABCABAC若用与非门实若用与非门实现,将最简与现,将最简与或表达式变换或表达式变换乘最简与非乘最简与非-与与非表达式非表达式 3 第69页,本讲稿共134页2 2、由、由逻辑图逻辑图到真值表到真值表的转换的转换逻辑图逻辑图逻辑表达逻辑表达式式 1 1 最简与或最简与或表达式表达式化简 2&A1CBBAACY11 2 从输入到输出逐级写出第70页,本讲稿共134页最简与或最简与或表达式

39、表达式 3 真值表真值表 3 第71页,本讲稿共134页本节小结逻逻辑辑函函数数可可用用真真值值表表、逻逻辑辑表表达达式式、卡卡诺诺图图、逻逻辑辑图图和和波波形形图图5 5种种方方式式表表示示,它它们们各各具特点,但本质相通,可以互相转换。具特点,但本质相通,可以互相转换。对对于于一一个个具具体体的的逻逻辑辑函函数数,究究竟竟采采用用哪种表示方式应视实际需要而定。哪种表示方式应视实际需要而定。在在使使用用时时应应充充分分利利用用每每一一种种表表示示方方式式的的优优点点。由由于于由由真真值值表表到到逻逻辑辑图图和和由由逻逻辑辑图图到到真真值值表表的的转转换换,直直接接涉涉及及到到数数字字电电路路

40、的的分分析析和设计问题,因此显得更为重要。和设计问题,因此显得更为重要。第72页,本讲稿共134页1.5 1.5 逻辑函数的化简逻辑函数的化简1.5.1 1.5.1 逻辑函数的公式化简法逻辑函数的公式化简法逻辑函数的公式化简法逻辑函数的公式化简法1.5.2 1.5.2 逻辑函数的卡诺图化简法逻辑函数的卡诺图化简法逻辑函数的卡诺图化简法逻辑函数的卡诺图化简法1.5.3 1.5.3 带无关项的逻辑函数化简带无关项的逻辑函数化简带无关项的逻辑函数化简带无关项的逻辑函数化简退出退出退出退出第73页,本讲稿共134页逻辑函数化简的意义:逻辑表达式越简单,实现它的电路越简单,电路工作越稳定可靠。1.5.1

41、 逻辑函数的公式化简法逻辑函数的公式化简法1 1、最简与或表达式最简与或表达式乘积项最少、并且每个乘积项中的变量也最少的与或表达式。最简与或表达式最简与或表达式第74页,本讲稿共134页2 2、最简与非最简与非-与非表达式与非表达式非号最少、并且每个非号下面乘积项中的变量也最少的与非-与非表达式。在最简与或表达式的基础上两次取反用摩根定律去掉下面的非号3 3、最简或与表达式最简或与表达式括号最少、并且每个括号内相加的变量也最少的或与表达式。求出反函数的最简与或表达式利用反演规则写出函数的最简或与表达式第75页,本讲稿共134页4 4、最简或非最简或非-或非表达式或非表达式非号最少、并且每个非号

42、下面相加的变量也最少的或非-或非表达式。求最简或非-或非表达式两次取反、最简与或非表达式最简与或非表达式非号下面相加的乘积项最少、并且每个乘积项中相乘的变量也最少的与或非表达式。求最简或非-或非表达式用摩根定律去掉下面的非号用摩根定律去掉大非号下面的非号第76页,本讲稿共134页逻辑函数的公式化简法逻辑函数的公式化简法1 1、并项法、并项法逻辑函数的公式化简法就是运用逻辑代数的基本公式、定理和规则来化简逻辑函数。利用公式1,将两项合并为一项,并消去一个变量。若两个乘积项中分别包含同一个因子的原变量和反变量,而其他因子都相同时,则这两项可以合并成一项,并消去互为反变量的因子。运用摩根定律运用分配

43、律运用分配律第77页,本讲稿共134页2 2、吸收法、吸收法如果乘积项是另外一个乘积项的因子,则这另外一个乘积项是多余的。运用摩根定律()利用公式,消去多余的项。()利用公式,消去多余的变量。如果一个乘积项的反是另一个乘积项的因子,则这个因子是多余的。第78页,本讲稿共134页、配项法、配项法()利用公式(),为某一项配上其所缺的变量,以便用其它方法进行化简。()利用公式,为某项配上其所能合并的项。第79页,本讲稿共134页、消去冗余项法、消去冗余项法利用冗余律,将冗余项消去。第80页,本讲稿共134页例:化简函数解:先求出Y的对偶函数Y,并对其进行化简。求Y的对偶函数,便得的最简或与表达式。

44、第81页,本讲稿共134页1.5.2 逻辑函数的卡诺图化简法逻辑函数的卡诺图化简法1 1、卡诺图的构成、卡诺图的构成逻辑函数的图形化简法是将逻辑函数用卡诺图来表示,利用卡诺图来化简逻辑函数。将逻辑函数真值表中的最小项重新排列成矩阵形式,并且使矩阵的横方向和纵方向的逻辑变量的取值按照格雷码的顺序排列矩阵的横方向和纵方向的逻辑变量的取值按照格雷码的顺序排列,这样构成的图形就是卡诺图。卡诺图的特点是任意两个相邻的最小项在图中也是相邻的。(相邻项是指两个最小项只有一个因子互为反变量,其余因子均相同,又称为逻辑相邻项)。每个2变量的最小项有两个最小项与它相邻每个3变量的最小项有3个最小项与它相邻第82页

45、,本讲稿共134页每个4变量的最小项有4个最小项与它相邻最左列的最小项与最右列的相应最小项也是相邻的最上面一行的最小项与最下面一行的相应最小项也是相邻的两个相邻最小项可以合并消去一个变量逻辑函数化简的实质就是相邻最小项的合并第83页,本讲稿共134页2 2、逻辑函数在卡诺图中的表示、逻辑函数在卡诺图中的表示(1)逻辑函数是以真值表或者以最小项表达式给出:在卡诺图上那些与给定逻辑函数的最小项相对应的方格内填入1,其余的方格内填入0。m1m3m4m6m7m11m14m15第84页,本讲稿共134页(2)逻辑函数以一般的逻辑表达式给出:先将函数变换为与或表达式(不必变换为最小项之和的形式),然后在卡

46、诺图上与每一个乘积项所包含的那些最小项(该乘积项就是这些最小项的公因子)相对应的方格内填入1,其余的方格内填入0。变换为与或表达式的公因子的公因子说明:如果求得了函数的反函数,则对中所包含的各个最小项,在卡诺图相应方格内填入0,其余方格内填入1。第85页,本讲稿共134页3 3、卡诺图的性质、卡诺图的性质(1)任何两个(21个)标1的相邻最小项,可以合并为一项,并消去一个变量(消去互为反变量的因子,保留公因子)。第86页,本讲稿共134页(2)任何4个(22个)标1的相邻最小项,可以合并为一项,并消去2个变量。第87页,本讲稿共134页第88页,本讲稿共134页(3)任何8个(23个)标1的相

47、邻最小项,可以合并为一项,并消去3个变量。小小结结:相相邻邻最最小小项项的的数数目目必必须须为为个个才才能能合合并并为为一一项项,并并消消去去个个变变量量。包包含含的的最最小小项项数数目目越越多多,即即由由这这些些最最小小项项所所形形成成的的圈圈越越大大,消消去去的的变变量量也也就就越越多多,从从而而所所得得到到的的逻逻辑辑表表达达式式就就越越简简单单。这这就就是是利利用用卡卡诺诺图图化化简简逻逻辑辑函函数数的的基基本本原原理理。第89页,本讲稿共134页4 4、图形法化简的基本步骤、图形法化简的基本步骤逻辑表达式逻辑表达式或真值表或真值表卡诺图卡诺图 1 1 第90页,本讲稿共134页合并最

48、小项合并最小项圈越大越好,但每个圈中标的方格数目必须为个。同一个方格可同时画在几个圈内,但每个圈都要有新的方格,否则它就是多余的。不能漏掉任何一个标的方格。最简与或表达式最简与或表达式冗余项 2 2 3 3 将代表每个圈的乘积项相加第91页,本讲稿共134页两点说明:在有些情况下,最小项的圈法不只一种,得到的各个乘积项组成的与或表达式各不相同,哪个是最简的,要经过比较、检查才能确定。不是最简最简第92页,本讲稿共134页 在有些情况下,不同圈法得到的与或表达式都是最简形式。即一个函数的最简与或表达式不是唯一的。第93页,本讲稿共134页1.4.4 含随意项的逻辑函数的化简含随意项的逻辑函数的化

49、简随意项随意项:函数可以随意取值(可以为0,也可以为1)或不会出现的变量取值所对应的最小项称为随意项,也叫做约束项或无关项。1 1、含随意项的逻辑函数含随意项的逻辑函数例如:判断一位十进制数是否为偶数。不会出现不会出现不会出现不会出现不会出现不会出现 说 明 1 1 1 10 0 1 1 1 1 1 1 01 0 1 1 0 1 1 0 10 0 1 0 1 1 1 0 01 0 1 0 0 1 0 1 10 0 0 1 1 1 0 1 01 0 0 1 00 1 0 0 10 0 0 0 11 1 0 0 01 0 0 0 0Y A B C DY A B C D第94页,本讲稿共134页输入

50、变量A,B,C,D取值为00001001时,逻辑函数Y有确定的值,根据题意,偶数时为1,奇数时为0。A,B,C,D取值为1010 1111的情况不会出现或不允许出现,对应的最小项属于随意项。用符号“”、“”或“d”表示。随意项之和构成的逻辑表达式叫做 随意条件或约束条件,用一个值恒为 0 的条件等式表示。第95页,本讲稿共134页含有随意条件的逻辑函数可以表示成如下形式:2 2、含随意项的逻辑函数的化简含随意项的逻辑函数的化简在逻辑函数的化简中,充分利用随意项可以得到更加简单的逻辑表达式,因而其相应的逻辑电路也更简单。在化简过程中,随意项的取值可视具体情况取0或取1。具体地讲,如果随意项对化简

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁