《工程力学 达朗贝尔原理精.ppt》由会员分享,可在线阅读,更多相关《工程力学 达朗贝尔原理精.ppt(52页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、工程力学 达朗贝尔原理第1页,本讲稿共52页 引引 言言第第7章章 达朗贝尔原理达朗贝尔原理第2页,本讲稿共52页 引引 言言 引进惯性力的概念,将动力学系统的二阶运引进惯性力的概念,将动力学系统的二阶运引进惯性力的概念,将动力学系统的二阶运引进惯性力的概念,将动力学系统的二阶运 动量表示为惯性力,进而应用静力学方法研究动动量表示为惯性力,进而应用静力学方法研究动动量表示为惯性力,进而应用静力学方法研究动动量表示为惯性力,进而应用静力学方法研究动 力学问题力学问题力学问题力学问题 达朗贝尔原理又称达朗贝尔原理又称动静法动静法。达朗贝尔原理为解决非自由质点系的动力学达朗贝尔原理为解决非自由质点系
2、的动力学达朗贝尔原理为解决非自由质点系的动力学达朗贝尔原理为解决非自由质点系的动力学 问题提供了有别于动力学普遍定理的另外一类方问题提供了有别于动力学普遍定理的另外一类方问题提供了有别于动力学普遍定理的另外一类方问题提供了有别于动力学普遍定理的另外一类方 法。法。法。法。达朗贝尔原理广泛应用于刚体动力学求解动约达朗贝尔原理广泛应用于刚体动力学求解动约 束力。束力。束力。束力。第3页,本讲稿共52页 几个工程实际问题几个工程实际问题第第7章章 达朗贝尔原理达朗贝尔原理第4页,本讲稿共52页爆爆破破时时烟烟囱囱怎怎样样倒倒塌塌 几个工程实际问题几个工程实际问题第5页,本讲稿共52页爆爆破破时时烟烟
3、囱囱怎怎样样倒倒塌塌 几个工程实际问题几个工程实际问题第6页,本讲稿共52页 1、建立蛤蟆夯的运动学和、建立蛤蟆夯的运动学和动力学模型;动力学模型;2、分析蛤蟆夯工作过程、分析蛤蟆夯工作过程中的几个阶段。中的几个阶段。几个工程实际问题几个工程实际问题第7页,本讲稿共52页7-17-1 惯性力惯性力 质点的达朗贝尔原理质点的达朗贝尔原理第第7章章 达朗贝尔原理达朗贝尔原理第8页,本讲稿共52页am7-1 7-1 惯性力惯性力 质点的达朗贝尔原理质点的达朗贝尔原理质点的达朗贝尔原理质点的达朗贝尔原理一、一、惯性力的概念惯性力的概念 惯性力惯性力惯性力惯性力FFmF=maF=-FF=-maa第9页,
4、本讲稿共52页惯性力的特性惯性力的特性 反映物体所固有的抵抗其运动状态发生变化的性质。反映物体所固有的抵抗其运动状态发生变化的性质。反映物体所固有的抵抗其运动状态发生变化的性质。反映物体所固有的抵抗其运动状态发生变化的性质。惯性力不作用在物体上,但其大小方向由物体本身的质量与加速度来度量。惯性力不作用在物体上,但其大小方向由物体本身的质量与加速度来度量。惯性力不作用在物体上,但其大小方向由物体本身的质量与加速度来度量。惯性力不作用在物体上,但其大小方向由物体本身的质量与加速度来度量。7-1 7-1 惯性力惯性力惯性力惯性力 质点的达朗贝尔原理质点的达朗贝尔原理质点的达朗贝尔原理质点的达朗贝尔原
5、理一、一、惯性力的概念惯性力的概念惯性力的概念惯性力的概念 惯性力惯性力惯性力惯性力F=-ma第10页,本讲稿共52页x xz zy yO Om mA A非自由质点非自由质点非自由质点非自由质点 A Am 质量;质量;质量;质量;sS 运动轨迹。运动轨迹。运动轨迹。运动轨迹。二、二、质点的达朗贝尔原理质点的达朗贝尔原理7-1 7-1 惯性力惯性力惯性力惯性力 质点的达朗贝尔原理质点的达朗贝尔原理质点的达朗贝尔原理质点的达朗贝尔原理F 主动力;主动力;FN 约束力;约束力;F FF FR RF FN Na a第11页,本讲稿共52页根据牛顿定律根据牛顿定律根据牛顿定律根据牛顿定律 此即非自由质点
6、的达朗贝尔原理此即非自由质点的达朗贝尔原理此即非自由质点的达朗贝尔原理此即非自由质点的达朗贝尔原理二、二、质点的达朗贝尔原理质点的达朗贝尔原理质点的达朗贝尔原理质点的达朗贝尔原理7-1 7-1 惯性力惯性力 质点的达朗贝尔原理质点的达朗贝尔原理x xz zy yO Om mA AsF FF FR RF FN Na aF FI IFI m aF+FN FI 0F+FN m aF+FN m a 0第12页,本讲稿共52页 非自由质点的达朗贝尔原理非自由质点的达朗贝尔原理非自由质点的达朗贝尔原理非自由质点的达朗贝尔原理 质点的惯性力质点的惯性力质点的惯性力质点的惯性力 作用在质点上的主动力和约束力与
7、假想施加作用在质点上的主动力和约束力与假想施加在质点上的惯性力,形式上组成平衡力系。在质点上的惯性力,形式上组成平衡力系。二、二、质点的达朗贝尔原理质点的达朗贝尔原理质点的达朗贝尔原理质点的达朗贝尔原理7-1 7-1 惯性力惯性力惯性力惯性力 质点的达朗贝尔原理质点的达朗贝尔原理质点的达朗贝尔原理质点的达朗贝尔原理FI m aF+FN FI 0第13页,本讲稿共52页FI I m am aF+F FN FI I 0应用达朗贝尔原理求解非自由质点动力学问题的方法应用达朗贝尔原理求解非自由质点动力学问题的方法应用达朗贝尔原理求解非自由质点动力学问题的方法应用达朗贝尔原理求解非自由质点动力学问题的方
8、法动静法动静法1 1、分析质点所受的主动力和约束力;、分析质点所受的主动力和约束力;2 2、分析质点的运动,确定加速度;、分析质点的运动,确定加速度;、分析质点的运动,确定加速度;、分析质点的运动,确定加速度;3、在质点上施加与加速度方向相反的惯性力;、在质点上施加与加速度方向相反的惯性力;4 4、应用静力学平衡方程求解。、应用静力学平衡方程求解。二、二、质点的达朗贝尔原理质点的达朗贝尔原理质点的达朗贝尔原理质点的达朗贝尔原理7-1 7-1 惯性力惯性力 质点的达朗贝尔原理质点的达朗贝尔原理第14页,本讲稿共52页非自由质点达朗贝尔原理的投影形式非自由质点达朗贝尔原理的投影形式二、二、质点的达
9、朗贝尔原理质点的达朗贝尔原理质点的达朗贝尔原理质点的达朗贝尔原理7-1 7-1 惯性力惯性力 质点的达朗贝尔原理质点的达朗贝尔原理质点的达朗贝尔原理质点的达朗贝尔原理第15页,本讲稿共52页例例 题题 1离心调速器离心调速器已知:已知:已知:已知:m m1球球A、B B 的质量;的质量;m m2 2重锤重锤C C 的质量;的质量;的质量;的质量;l l杆件的长度;杆件的长度;绕绕O1 1 y1 1轴旋转的匀角速度。轴旋转的匀角速度。求:求:q q 的关系。的关系。B BA AC Cl ll ll ll lq qq qO O1 1x x1 1y y1 17-1 7-1 惯性力惯性力惯性力惯性力
10、质点的达朗贝尔原理质点的达朗贝尔原理第16页,本讲稿共52页例例例例 题题题题 1 1解:解:1、分析受力:、分析受力:B BC CB BA AC Cl ll ll ll lq qq qO O1 1x x1 1y y1 17-1 7-1 惯性力惯性力 质点的达朗贝尔原理质点的达朗贝尔原理质点的达朗贝尔原理质点的达朗贝尔原理F FT2T2F FT1T1F FT3T3F F T1T1m m1 1 g gm m2 2 g g第17页,本讲稿共52页解:解:2 2、分析运动:、分析运动:FIm1l l 2sinq4、应用动静法:、应用动静法:、应用动静法:、应用动静法:3、施加惯性力:、施加惯性力:对
11、于球对于球 B BB BC CF FT2T2F FT1T1F FT3T3F F T1T1m m1 1 g gm m2 2 g gaBaBF FI例例例例 题题题题 1 17-1 7-1 惯性力惯性力惯性力惯性力 质点的达朗贝尔原理质点的达朗贝尔原理第18页,本讲稿共52页解:解:对于重锤对于重锤 C例例例例 题题题题 1 17-1 7-1 惯性力惯性力惯性力惯性力 质点的达朗贝尔原理质点的达朗贝尔原理质点的达朗贝尔原理质点的达朗贝尔原理B BC CF FT2T2F FT1T1F FT3T3F F T1T1m m1 1 g gm m2 2 g gaBaBF FI第19页,本讲稿共52页第第7章章
12、 达朗贝尔原理达朗贝尔原理7-2 质点系的达朗贝尔原理质点系的达朗贝尔原理第20页,本讲稿共52页m m1 1mimim m2 2质点系的主动力系质点系的主动力系质点系的主动力系质点系的主动力系质点系的约束力系质点系的约束力系质点系的惯性力系质点系的惯性力系质点系的惯性力系质点系的惯性力系7-2 7-2 质点系的达朗贝尔原理质点系的达朗贝尔原理一、一、质点系的达朗贝尔原理质点系的达朗贝尔原理F F1 1F Fi iF F2 2a a1 1a a2 2a ai iF FI1I1F FI Ii iF FI2I2F FN2N2F FN Ni iF FN1N1第21页,本讲稿共52页对于第对于第对于第
13、对于第 i 个质点个质点质点系的达朗贝尔原理质点系的达朗贝尔原理7-2 7-2 质点系的达朗贝尔原理质点系的达朗贝尔原理一、一、质点系的达朗贝尔原理质点系的达朗贝尔原理质点系的达朗贝尔原理质点系的达朗贝尔原理m m1 1mimim m2 2F F1 1F Fi iF F2 2a a1 1a a2 2a ai iF FI1I1F FI Ii iF FI2I2F FN2N2F FN Ni iF FN1N1 质点系中每个质点上作用的主动质点系中每个质点上作用的主动力、约束力和它的惯性力在形式上组力、约束力和它的惯性力在形式上组成平衡力系。成平衡力系。第22页,本讲稿共52页质点系的平衡方程质点系的平
14、衡方程质点系的平衡方程质点系的平衡方程7-2 7-2 质点系的达朗贝尔原理质点系的达朗贝尔原理质点系的达朗贝尔原理质点系的达朗贝尔原理一、一、质点系的达朗贝尔原理质点系的达朗贝尔原理质点系的达朗贝尔原理质点系的达朗贝尔原理m m1 1mimim m2 2F F1 1F Fi iF F2 2a a1 1a a2 2a ai iF FI1I1F FI Ii iF FI2I2F FN2N2F FN Ni iF FN1N1第23页,本讲稿共52页 已已知知:滑滑轮轮半半径径为为r r,质质质质量量量量为为为为m,均均均均匀匀匀匀分分分分布布布布在在在在轮轮轮轮缘缘缘缘上上上上。A A、B物物块块质质量
15、量分别为分别为m1 1和和和和m m2,且,且m1 1 m2 2。OABr例例 题题 2二、二、达朗贝尔原理的应用达朗贝尔原理的应用求:物块的加速度。求:物块的加速度。求:物块的加速度。求:物块的加速度。7-2 7-2 质点系的达朗贝尔原理质点系的达朗贝尔原理第24页,本讲稿共52页例例 题题 27-2 7-2 质点系的达朗贝尔原理质点系的达朗贝尔原理质点系的达朗贝尔原理质点系的达朗贝尔原理第25页,本讲稿共52页OABry解:解:1 1、分析受力:、分析受力:主动力:主动力:约束力:约束力:约束力:约束力:2 2、分析运动:、分析运动:、分析运动:、分析运动:3 3、施加惯性力:、施加惯性力
16、:、施加惯性力:、施加惯性力:例例 题题 27-2 7-2 质点系的达朗贝尔原理质点系的达朗贝尔原理质点系的达朗贝尔原理质点系的达朗贝尔原理m m1 1g gmgmgm m2 2g gF FN Na aa am1g,m2g,mgFN第26页,本讲稿共52页4 4、应用动静法:、应用动静法:、应用动静法:、应用动静法:O例例 题题 27-2 7-2 质点系的达朗贝尔原理质点系的达朗贝尔原理质点系的达朗贝尔原理质点系的达朗贝尔原理OABrym m1 1g gmgmgm m2 2g gF FN Na aa a第27页,本讲稿共52页因为因为解得解得例例 题题 27-2 7-2 质点系的达朗贝尔原理质
17、点系的达朗贝尔原理OABrym m1 1g gmgmgm m2 2g gF FN Na aa a第28页,本讲稿共52页7-3 刚体惯性力系的简化刚体惯性力系的简化第第7章章 达朗贝尔原理达朗贝尔原理第29页,本讲稿共52页一、一、刚体惯性力系特点刚体惯性力系特点7-3 刚体惯性力系的简化刚体惯性力系的简化第30页,本讲稿共52页一、一、一、一、刚体惯性力系特点刚体惯性力系特点刚体惯性力系特点刚体惯性力系特点 刚体惯性力的分布与刚体的质量分布以及刚体惯性力的分布与刚体的质量分布以及刚体惯性力的分布与刚体的质量分布以及刚体惯性力的分布与刚体的质量分布以及刚体上各点的绝对加速度有关。刚体上各点的绝
18、对加速度有关。刚体上各点的绝对加速度有关。刚体上各点的绝对加速度有关。对于平面问题对于平面问题对于平面问题对于平面问题(或者可以简化为平面问题或者可以简化为平面问题或者可以简化为平面问题或者可以简化为平面问题),刚体的惯性力为面积力,组成平面力系。刚体的惯性力为面积力,组成平面力系。对于一般问题,刚体的惯性力为体积力,对于一般问题,刚体的惯性力为体积力,组成空间一般力系。组成空间一般力系。7-3 刚体惯性力系的简化刚体惯性力系的简化FIimiai第31页,本讲稿共52页二、二、刚体惯性力系简化结果刚体惯性力系简化结果 主矢与主矩主矢与主矩7-3 刚体惯性力系的简化刚体惯性力系的简化第32页,本
19、讲稿共52页二、二、二、二、刚体惯性力系简化结果刚体惯性力系简化结果刚体惯性力系简化结果刚体惯性力系简化结果 主矢与主矩主矢与主矩主矢与主矩主矢与主矩 惯性力系的主矢惯性力系的主矢 惯性力系的主矢等于刚体的质量与刚体质心惯性力系的主矢等于刚体的质量与刚体质心加速度的乘积,方向与质心加速度方向相反。加速度的乘积,方向与质心加速度方向相反。这一简化结果与运动形式无关。这一简化结果与运动形式无关。7-3 刚体惯性力系的简化刚体惯性力系的简化刚体惯性力系的简化刚体惯性力系的简化第33页,本讲稿共52页 惯性力系的主矩:惯性力系的主矩:惯性力系的主矩与刚体的惯性力系的主矩与刚体的惯性力系的主矩与刚体的惯
20、性力系的主矩与刚体的运动形式有关。运动形式有关。m m2 2mnmnm m1 11 1、平移、平移 刚体平移时,惯性力系简化为刚体平移时,惯性力系简化为通过刚体质心的合力。通过刚体质心的合力。m mC二、二、二、二、刚体惯性力系简化结果刚体惯性力系简化结果刚体惯性力系简化结果刚体惯性力系简化结果 主矢与主矩主矢与主矩主矢与主矩主矢与主矩7-3 刚体惯性力系的简化刚体惯性力系的简化a a1 1a a2 2a an nF FI In nF FI1I1F FI2I2a aC Cm mCa aC CF FIRIR第34页,本讲稿共52页 O OMIO2 2、定轴转动、定轴转动 mimiri二、二、二、
21、二、刚体惯性力系简化结果刚体惯性力系简化结果刚体惯性力系简化结果刚体惯性力系简化结果 主矢与主矩主矢与主矩主矢与主矩主矢与主矩7-3 刚体惯性力系的简化刚体惯性力系的简化刚体惯性力系的简化刚体惯性力系的简化第35页,本讲稿共52页2 2、定轴转动、定轴转动 O OMIO C CrC二、二、二、二、刚体惯性力系简化结果刚体惯性力系简化结果刚体惯性力系简化结果刚体惯性力系简化结果 主矢与主矩主矢与主矩主矢与主矩主矢与主矩7-3 刚体惯性力系的简化刚体惯性力系的简化刚体惯性力系的简化刚体惯性力系的简化第36页,本讲稿共52页2 2、定轴转动、定轴转动 O OMIO C CrC二、二、二、二、刚体惯性
22、力系简化结果刚体惯性力系简化结果刚体惯性力系简化结果刚体惯性力系简化结果 主矢与主矩主矢与主矩主矢与主矩主矢与主矩7-3 刚体惯性力系的简化刚体惯性力系的简化 具有对称平面的刚体绕垂直于对称平面的固定轴转动时,惯性力系向固定轴简化的结果,具有对称平面的刚体绕垂直于对称平面的固定轴转动时,惯性力系向固定轴简化的结果,得到一个合力和一个合力偶。得到一个合力和一个合力偶。第37页,本讲稿共52页3 3、平面运动、平面运动C C ri rimimi 以质心以质心C C为基点,将平面运动为基点,将平面运动为基点,将平面运动为基点,将平面运动分解为跟随基点的平移和绕基点分解为跟随基点的平移和绕基点分解为跟
23、随基点的平移和绕基点分解为跟随基点的平移和绕基点的转动。对于刚体上的任意质点,的转动。对于刚体上的任意质点,相对切向加速度相对切向加速度相对切向加速度相对切向加速度相对法向加速度相对法向加速度相对法向加速度相对法向加速度二、二、二、二、刚体惯性力系简化结果刚体惯性力系简化结果刚体惯性力系简化结果刚体惯性力系简化结果 主矢与主矩主矢与主矩主矢与主矩主矢与主矩7-3 刚体惯性力系的简化刚体惯性力系的简化刚体惯性力系的简化刚体惯性力系的简化aCaCaC 牵连加速度牵连加速度第38页,本讲稿共52页C CaCC CaC 3 3、平面运动、平面运动mimiri ri二、二、二、二、刚体惯性力系简化结果刚
24、体惯性力系简化结果刚体惯性力系简化结果刚体惯性力系简化结果 主矢与主矩主矢与主矩主矢与主矩主矢与主矩7-3 刚体惯性力系的简化刚体惯性力系的简化刚体惯性力系的简化刚体惯性力系的简化aC第39页,本讲稿共52页 平面运动刚体惯性力系向质心简化的结果得到一个合力和一个合平面运动刚体惯性力系向质心简化的结果得到一个合力和一个合力偶。力偶。3 3、平面运动、平面运动二、二、二、二、刚体惯性力系简化结果刚体惯性力系简化结果刚体惯性力系简化结果刚体惯性力系简化结果 主矢与主矩主矢与主矩主矢与主矩主矢与主矩7-3 刚体惯性力系的简化刚体惯性力系的简化C CaC 第40页,本讲稿共52页 刚体惯性力系的主矢与
25、刚体运动形式无关刚体惯性力系的主矢与刚体运动形式无关1 1、平移、平移、平移、平移2 2、定轴转动、定轴转动、定轴转动、定轴转动3 3 3 3、平面运动、平面运动、平面运动、平面运动7-3 刚体惯性力系的简化刚体惯性力系的简化第41页,本讲稿共52页 惯性力系的主矩惯性力系的主矩惯性力系的主矩惯性力系的主矩 惯性力系的主矩与刚体的惯性力系的主矩与刚体的惯性力系的主矩与刚体的惯性力系的主矩与刚体的运动形式有关。运动形式有关。1 1、平移、平移、平移、平移2 2 2 2、定轴转动、定轴转动3 3 3 3、平面运动、平面运动、平面运动、平面运动7-3 刚体惯性力系的简化刚体惯性力系的简化第42页,本
26、讲稿共52页三、三、达朗贝尔原理的应用达朗贝尔原理的应用7-3 刚体惯性力系的简化刚体惯性力系的简化第43页,本讲稿共52页 已已已已知知知知:起起起起动动动动时时时时电电电电动动动动机机机机的的的的平平平平均均均均驱驱驱驱动动动动力力力力矩矩矩矩为为为为M,被被被被提提提提升升升升重重重重物物物物的的的的质质质质量量量量为为为为m1 1,鼓鼓轮轮质质量量为为m m2,半半径为径为r r,它对中心的回转半径为,它对中心的回转半径为r r r rO。x xy yMMr rO例例 题题 3 求求求求:起起起起动动动动时时时时重重重重物物物物的的的的平平平平均均均均加加加加速速速速度度度度a a和和
27、和和此此此此时时时时轴轴轴轴承承承承O的动约束力。的动约束力。7-3 刚体惯性力系的简化刚体惯性力系的简化刚体惯性力系的简化刚体惯性力系的简化第44页,本讲稿共52页例例例例 题题题题 3 37-3 刚体惯性力系的简化刚体惯性力系的简化刚体惯性力系的简化刚体惯性力系的简化第45页,本讲稿共52页x xy y MMF FI IMMI IO Or rm m1 1g ga aOm m2 2g g解:解:FOxFOxFOyFOy1 1、分析受力:、分析受力:主动力:主动力:m1g g,m2g,MM约束力:约束力:F FOx2 2、分析运动:、分析运动:3、施加惯性力:、施加惯性力:、施加惯性力:、施加
28、惯性力:,FOOy y重物:重物:重物:重物:鼓轮:鼓轮:鼓轮:鼓轮:4 4、应用动静法:、应用动静法:、应用动静法:、应用动静法:7-3 刚体惯性力系的简化刚体惯性力系的简化例例例例 题题题题 3 3第46页,本讲稿共52页得得得得解出解出解出解出x xy y MFIMIOr rm1ga aOFOxFOym2g7-3 刚体惯性力系的简化刚体惯性力系的简化例例例例 题题题题 3 3第47页,本讲稿共52页A AB BC CR R 均质圆盘的质量为均质圆盘的质量为均质圆盘的质量为均质圆盘的质量为mm1 1,由水平绳拉着沿水平,由水平绳拉着沿水平,由水平绳拉着沿水平,由水平绳拉着沿水平面作纯滚动,
29、绳的另一端通过滑轮面作纯滚动,绳的另一端通过滑轮面作纯滚动,绳的另一端通过滑轮面作纯滚动,绳的另一端通过滑轮B B并系一并系一并系一并系一重物重物重物重物A A,重物的质量为,重物的质量为,重物的质量为,重物的质量为mm2 2。绳和定滑轮。绳和定滑轮。绳和定滑轮。绳和定滑轮B B的质的质的质的质量忽略不计。量忽略不计。量忽略不计。量忽略不计。求求求求:重重重重物物物物下下下下降降降降的的的的加加加加速速速速度度度度,圆圆圆圆盘盘盘盘质质质质心心心心的的的的加加加加速速速速度度度度及作用在圆盘上绳的拉力。及作用在圆盘上绳的拉力。及作用在圆盘上绳的拉力。及作用在圆盘上绳的拉力。例例例例 题题题题
30、4 47-3 刚体惯性力系的简化刚体惯性力系的简化D D 第48页,本讲稿共52页 解:解:解:解:以以以以圆圆圆圆盘盘盘盘为为为为研研研研究究究究对对对对象象象象,受受受受力力力力分分分分析析析析如如如如图图图图所所所所示示示示。虚拟惯性力虚拟惯性力虚拟惯性力虚拟惯性力F FI1I1和和和和MMICIC分别为:分别为:分别为:分别为:7-3 刚体惯性力系的简化刚体惯性力系的简化刚体惯性力系的简化刚体惯性力系的简化例例例例 题题题题 4 4C CF FF FN NWW1 1 MMI IC CF FT TD D列平衡方程列平衡方程列平衡方程列平衡方程第49页,本讲稿共52页7-3 刚体惯性力系的
31、简化刚体惯性力系的简化刚体惯性力系的简化刚体惯性力系的简化例例例例 题题题题 4 4 以以以以重重重重物物物物为为为为研研研研究究究究对对对对象象象象,受受受受力力力力分分分分析析析析如如如如图图图图所所所所示示示示。虚拟惯性力为:虚拟惯性力为:虚拟惯性力为:虚拟惯性力为:列平衡方程列平衡方程列平衡方程列平衡方程A AWW2 2FIFI2 2FTFT第50页,本讲稿共52页例例 题题 47-3 刚体惯性力系的简化刚体惯性力系的简化刚体惯性力系的简化刚体惯性力系的简化联立求得:联立求得:联立求得:联立求得:圆盘质心的加速度为:圆盘质心的加速度为:圆盘质心的加速度为:圆盘质心的加速度为:作用在圆盘上绳的拉力为:作用在圆盘上绳的拉力为:作用在圆盘上绳的拉力为:作用在圆盘上绳的拉力为:第51页,本讲稿共52页第52页,本讲稿共52页