《动量守恒定律(共7页).doc》由会员分享,可在线阅读,更多相关《动量守恒定律(共7页).doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上动量守恒定律一.动量和冲量1.动量:物体的质量和速度的乘积叫做动量:p=mv动量是描述物体运动状态的一个状态量,它与时刻相对应。动量是矢量,它的方向和速度的方向相同。2.冲量:力和力的作用时间的乘积叫做冲量:I=Ft冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。高中阶段只要求会用I=Ft计算恒力的冲量。对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。要注意的是:冲量和功不同。恒力在一段时间内可能不作功,但一定有冲
2、量。例1. 质量为m的小球由高为H的光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大?解:力的作用时间都是,力的大小依次是mg、mHmgcos和mgsin,所以它们的冲量依次是: 特别要注意,该过程中弹力虽然不做功,但对物体有冲量。二、动量定理1.动量定理:物体所受合外力的冲量等于物体的动量变化。既I=p动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。现代物理学把力定义为物体动量的变化率:(牛顿第二定律的动量形式)
3、。动量定理的表达式是矢量式。在一维的情况下,各个矢量必须以同一个规定的方向为正。三动量守恒定律1.动量守恒定律的条件系统不受外力或者所受外力之和为零;系统受外力,但外力远小于内力,可以忽略不计;系统在某一个方向上所受的合外力为零,则该方向上动量守恒。全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。2动量守恒定律的表达形式(1) 即p1 p2=p1/ p2/,(2)p1 p2=0,p1= -p2 3.运用动量守恒定律的解题步骤 1明确研究对象,一般是两个或两个以上物体组成的系统; 2分析系统相互作用时的受力情况,判定系统动量是否守恒; 3选定正方向,确定相互作用前后两状态系统的动量;
4、4在同一地面参考系中建立动量守恒方程,并求解四、碰撞1.弹性碰撞 特点:系统动量守恒,机械能守恒 设质量m1的物体以速度v0与质量为m2的在水平面上静止的物体发生弹性正碰,则有动量守恒: 碰撞前后动能不变: 所以 (注:在同一水平面上发生弹性正碰,机械能守恒即为动能守恒)讨论 当ml=m2时,v1=0,v2=v0(速度互换) 当mlm2时,v10,v20(同向运动) 当mlm2时,v10(反向运动)当mlm2时,v1v,v22v0 (同向运动)、2.非弹性碰撞 特点:部分机械能转化成物体的内能,系统损失了机械能两物体仍能分离.动量守恒 用公式表示为:m1v1+m2v2= m1v1+m2v2 机
5、械能的损失: 3.完全非弹性碰撞 特点:碰撞后两物体粘在一起运动,此时动能损失最大,而动量守恒 用公式表示为: m1v1+m2v2=(m1+m2)v 动能损失:。【例题】甲、乙两球在光滑水平轨道上同向运动,已知它们的动量分别是p甲=5 kgm/s,p乙= 7 kgm/s,甲追乙并发生碰撞,碰后乙球的动量变为p乙=10 kgm/s,则两球质量m甲与m乙的关系可能是A.m甲=m乙B.m乙=2m甲C.m乙=4m甲D.m乙=6m甲五、平均动量守恒问题人船模型:1特点:初态时相互作用物体都处于静止状态,在物体发生相对运动的过程中,某一个方向的动量守恒(如水平方向动量守恒)对于这类问题,如果我们应用“人船
6、模型”也会使问题迅速得到解决,现具体分析如下: 【例1】静止在水面上的船长为L,质量为M,一个质量为m的人站在船头,当此人由船头走到船尾时,船移动了多大距离?分析:将人和车作为系统,动量守恒,设车向右移动的距离为s船=s,则人向左移动的距离为s人=Ls,取向右为正方向,根据动量守恒定律可得Msm(Ls)0,从而可解得s. 注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分。 说明:(1)此结论与人在船上行走的速度大小无关。不论是匀速行走还是变速行走,甚至往返行走,只要人最终到达船的左端,那么结论都是相同的。(2)做这类题目,首先要画好示意图,要特别注意两个物体相
7、对于地面的移动方向和两个物体位移大小之间的关系。 (3)以上所列举的人、船模型的前提是系统初动量为零。如果发生相互作用前系统就具有一定的动量,那就不能再用m1v1=m2v2这种形式列方程,而要利用(m1+m2)v0= m1v1+ m2v2列式。六、“子弹打木块”模型此模型包括:“子弹打击木块未击穿”和“子弹打击木块击穿”两种情况,它们有一个共同的特点是:初态时相互作用的物体有一个是静止的(木块),另一个是运动的(子弹)1“击穿”类其特点是:在某一方向动量守恒,子弹有初动量,木块有或无初动量,击穿时间很短,击穿后二者分别以某一速度度运动 【例2】质量为M、长为l的木块静止在光滑水平面上,现有一质
8、量为m的子弹以水平初速度v0射入木块,穿出时子弹速度为v,求子弹与木块作用过程中系统损失的机械能。 l v0 v S2“未击穿”类其特点是:在某一方向上动量守恒,如子弹有初动量而木块无初动量,碰撞时间非常短,子弹射入木块后二者以相同速度一起运动 【例3】 s2 ds1v0v 设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。解:子弹和木块最后共同运动,相当于完全非弹性碰撞。从动量的角度看,子弹射入木块过程中系统动量守恒: 从能量的角度看,该过程系统损失的动能全部转化为系统的内能。
9、设平均阻力大小为f,设子弹、木块的位移大小分别为s1、s2,如图所示,显然有s1-s2=d对子弹用动能定理: 对木块用动能定理: 、相减得: 这个式子的物理意义是:fd恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统内能的增加;可见,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积(由于摩擦力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用位移)。 由上式不难求得平均阻力的大小:至于木块前进的距离s2,可以由以上、相比得出:从牛顿运动定律和运动学公式出发,也可以得出同样的结论。由于子弹和木块都在恒力作用下做匀变速运
10、动,位移与平均速度成正比: 一般情况下,所以s2d。这说明,在子弹射入木块过程中,木块的位移很小,可以忽略不计。这就为分阶段处理问题提供了依据。象这种运动物体与静止物体相互作用,动量守恒,最后共同运动的类型,全过程动能的损失量可用公式: 当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统动量仍然守恒,系统动能损失仍然是EK= f d(这里的d为木块的厚度),但由于末状态子弹和木块速度不相等,所以不能再用式计算EK的大小。做这类题目时一定要画好示意图,把各种数量关系和速度符号标在图上,以免列方程时带错数据七爆炸类问题【例4】 抛出的手雷在最高点时水平速度为1
11、0m/s,这时忽然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。八某一方向上的动量守恒【例5】 如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成角时,圆环移动的距离是多少? 练习题 1.质量为M的楔形物块上有圆弧轨道,静止在水平面上。质量为m的小球以速度v1向物块运动。不计一切摩擦,圆弧小于90且足够长。求小球能上升到的最大高度H 和物块的最终速度v。2.如图所示,一质量为M的平板车B放在光滑水
12、平面上,在其右端放一质量为m的小木块A,mM,A、B间动摩擦因数为,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。3. 两块厚度相同的木块A和B,紧靠着放在光滑的水平面上,其质量分别为 , ,它们的下底面光滑,上表面粗糙;另有一质量 的滑块C(可视为质点),以 的速度恰好水平地滑到A的上表面,如图所示,由于摩擦,滑块最后停在木块B上,B和C的共同速度为3.0m/s,求(1)木块A的最终速度 ; (2)滑块C离开A时的速度 。4.如
13、图所示,A B C是光滑轨道,其中BC部分是半径为R的竖直放置的半圆一质量为M的小木块放在轨道水平部分,木块被水平飞来的质量为m的子弹射中,并滞留在木块中若被击中的木块沿轨道能滑到最高点C,已知木块对C点的压力大小为(M+m)g,求:子弹射入木块前瞬间速度的大小5.如图所示,在足够长的光滑水平轨道上静止三个小木块A、B、C,质量分别为mA=1kg,mB=1kg,mC=2kg,其中B与C用一个轻弹簧固定连接,开始时整个装置处于静止状态;A和B之间有少许塑胶炸药,A的左边有一个弹性挡板(小木块和弹性挡板碰撞过程没有能量损失)。现在引爆塑胶炸药,若炸药爆炸产生的能量有E=9J转化为A和B沿轨道方向的
14、动能,A和B分开后,A恰好在BC之间的弹簧第一次恢复到原长时追上B,并且在碰撞后和B粘到一起。求:(1)在A追上B之前弹簧弹性势能的最大值;(2)A与B相碰以后弹簧弹性势能的最大值。mRhLM6.如图所示,在小车的一端高h的支架上固定着一个半径为R的1/4圆弧光滑导轨,一质量为m =0.2kg的物体从圆弧的顶端无摩擦地滑下,离开圆弧后刚好从车的另一端擦过落到水平地面,车的质量M=2kg,车身长L=0.22m,车与水平地面间摩擦不计,图中h =0.20m,重力加速度g=10m/s2,求R.7.如图所示,质量为M=4kg的木板长L=1.4m,静止在光滑的水平地面上,其上端右侧静置一个质量为m=1kg的小滑块,小滑块与木板间的动摩擦因数为=0.4.今用一水平力F=28N向右拉木板,要使小滑块从木板上掉下来,求此力至少作用多长时间?(重力加速度g取10m/s2)mMFL8、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。设小车足够长,求:(1)木块和小车相对静止时小车的速度。(2)从木块滑上小车到它们处于相对静止所经历的时间。 (3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。专心-专注-专业