《纳米生物传感器优秀课件.ppt》由会员分享,可在线阅读,更多相关《纳米生物传感器优秀课件.ppt(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、纳米生物传感器第1页,本讲稿共16页 目录 l半导体材料光催化性能简介l金属氧化物纳米材料在生物传感上的应用l总结与展望第2页,本讲稿共16页1.1半导体光催化背景 通过利用可再生能源和新型环境友好型功能材料来治理或修复生态环境和制备清洁能源,并在最大限度上提高新型环境友好型功能材料的使用效率是21世纪环境及能源领域的重要目标之一。半导体光催化技术以其室温深度反应和可直接利用太阳能作为能源来驱动反应等独特性能,在此领域中发挥出重要作用。其一,光催化材料可将低能量密度的太阳能转化为能量密度较高的化学能(光催化分解水制氢气、还原二氧化碳制备有机物)或电能(染料敏化太阳能电池及光伏材料),其二,半导
2、体光催化材料可利用太阳能降解气相中或者液相中的有毒有害环境污染物。1972年,日本科学家藤岛(A.Fujishima)和本多(K.Honda)发现在紫外光照射下,TiO2电极能使水在常温常压下分解为氢气和氧气。以此为契机,开始了多相催化研究的新纪元。目前,半导体光催化技术已在环境保护、光分解水制氢以及光催化灭菌等领域显示出广阔的应用前景。第3页,本讲稿共16页1.2 半导体光催化反应原理半导体光催化反应原理 根据以能带为基础的电子理论,半导体的基本能带结构是:存在一些列的满带,在最上面的满带称为价带(Valence band,VB);存在一系列的空带,在最下面的空带称为导带(Conductio
3、n band,CB).价带和导带之间称为禁带。当用能量大于或等于禁带宽度(Eg)的光辐射半导体时,半导体价带上的电子可以被激发跃迁到导带上面,同时在价带上面产生相应的空穴,于是便在半导体内部生成了光生电子(e-)-光生空穴(h+)对。第4页,本讲稿共16页半导体分类 载流子:指可以自由移动的带有电荷的物质微粒,半导体中有两种载流子即电子和空穴。半导体在一定温度下,电子-空穴对的产生和复合同时存在并达到动态平衡,有一定的载流子浓度,从而具有一定的电导率,叫做本征半导体。本征半导体经过掺杂就形成杂质半导体,可分为N型半导体和P型半导体。在P型半导体中空穴是多数载流子,电子是少数载流子。在N型半导体
4、中电子是多数载流子,空穴是少数载流子。第5页,本讲稿共16页光催化机理 由于半导体能带的不连续性,电子与空穴的寿命较长,在电场的作用下,电子与空穴发生分离,并随之迁移到半导体表面的不同位置。他们能够在电场作用下或通过扩散的方式运动,与吸附在半导体催化剂表面上的物质发生氧化或还原反应,或者被表面晶格缺陷捕获,也可能直接发生复合。光生空穴能够与吸附在半导体表面的H2O发生作用生成羟基自由基(OH).OH是一种活性更高的氧化物种,能够氧化多种有机物并使之矿化。同时,光生电子也能够与O2发生作用生成HO和O2-等活性氧类,这些活性氧物种将直接参与到有机物的氧化还原反应过程当中,从而诱发反应物发生光催化
5、氧化还原反应。半导体光催化反应基本原理第6页,本讲稿共16页1.3 当前存在的问题与现有解决方法 研究最多的半导体光催化材料主要是金属氧化物和硫化物,如TiO2,WO3,Fe2O3,ZnO,CdS等。以TiO2为代表的一系列半导体光催化剂禁带宽度较大,仅对波长小于400 nm的紫外光响应,而此波段光在太阳光总能量中所占比例仅不足5%,这极大限制了这种材料的应用范围。光响应范围比较窄,量子效率比较低。其光催化性能需要进一步改善和增强,从而满足广泛的实际应用和商业利益的需求。因此,提高多组分复合光催化剂的光催化效率与量子产率又是一大难题。设计与开发具有可见光响应的光催化剂来提高太阳能利用率,是最终
6、实现产业化应用的关键。第7页,本讲稿共16页光催化剂改性研究 贵金属负载型光催化剂 复合型半导体光催化剂 离子掺杂型光催化剂 表面敏化 新型高效纳米光催化剂的研制第8页,本讲稿共16页2.1 纳米技术简介 广义上的纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料。纳米材料特殊结构决定了其理化性质既不同于微观的分子和原子,也不同于宏观的本体物质,存在表面效应、体积效应、量子效应和宏观量子隧道效应等四大突出效应。在催化、光学、磁学、电学、热学和力学等方面表现出很多特性能,并且已经在很多行业得到了很好的应用。若材料有i维处于纳米尺度范围,称此材料为3
7、-i 维纳米材料。有零维、一维、二维和三维的纳米材料。第9页,本讲稿共16页2.2 纳米半导体金属氧化物在生物传感器上的应用 光电化学生物传感器是基于物质的光电转换特性确定待测物浓度的一类检测装置。具有光电化学活性的物质受光激发后发生电荷分离或电荷传递过程,从而形成光电压或者光电流,待测物与光电化学活性物质之间的物理、化学相互作用产生的光电流或光电压的变化与待测物的浓度间的关系,是传感器定量检测的基础。光电化学传感通过光激发和电检测的手段,实现激发源和检测信号分离,而通过光信号与生物物质的相互作用定量生物物质浓度则可以有效提高灵敏度,实现痕量检测。目前,纳米结构光电极主要有:纳米颗粒组成的光电
8、极,此薄膜电极具有大的比表面积,便于生物固定化;核壳结构构建的光电极;一维纳米结构构建的光电极,一维纳米结构可以提供更快的电子传输,减少光生载流子的复合;三维纳米结构构建的光电极,三维纳米结构可以提供大的比表面积,更有效的光捕获和载流子传输,以及对生物活性物质活性的保持。第10页,本讲稿共16页纳米棒 例如,Liu 课题组制备的基于ZnO 纳米棒的第三代安培型葡萄糖传感器,固定于ZnO 纳米棒的葡萄糖氧化酶表现出很高的催化活性,构建的传感器在一个很宽的线性范围内具有高灵敏度和良好的选择性。基于葡萄糖氧化酶修饰的 ZnO 纳米棒阵列构建的第三代安培型葡萄糖传感器 第11页,本讲稿共16页纳米线
9、Li 课题组以热蒸发的方法制备了 Sb 掺的 SnO2纳米线,然后修饰辣根过氧化物酶构建过氧化氢生物传感器。纳米线表现出优异的电子传输能力和对过氧化氢的高的电活性,由其构建的生物传感器表现出高灵敏度、宽线性范围和长期稳定性。Sb 掺 SnO2纳米线 第12页,本讲稿共16页纳米管 纳米管可以认为中空的纳米线,因此,它除了具备纳米线的优异特性外,纳米管状结构将具有更大的比表面积,更有利于生物分子的固定及其活性的保持。Kong 课题组通过电沉积的方式在金电极上沉积 ZnO 纳米线阵列,然后通过化学腐蚀的方法形成纳米管阵列,然后以交联的方式将葡萄糖氧化酶固定到纳米管阵列,构建葡萄糖生物传感器。传感器
10、表现出对葡萄糖快速的响应,与基于纳米棒和平面结构的生物传感器相比,该传感器显现出更宽的线性范围和更高的灵敏度。ZnO 纳米管阵列第13页,本讲稿共16页三维金属氧化物电极 一维纳米结构的另外一个重要的应用就是作为基本的单元构建三维网络结构,在此基础上,将三维网络转移至导电衬底上,便可以构建三维多孔电极。三维多孔电极,就是构建电极的薄膜存在众多的孔道,由此表现出了超大的比表面积和短的离子扩散长度。如图 所示,Wang 课题组通过电化学沉积的方法在泡沫镍上沉积三维多孔Co3O4薄膜,并应用于锂离子电池中,表现出比 Co3O4箔阳极更优越的充放电能力。三维多孔 Co3O4薄膜第14页,本讲稿共16页
11、展望 通过半导体光敏材料有望将光学系统与各类生物传感器结合,从而开发出更多的光电化学型半导体生物传感器,。今后,对光电化学型半导体生物传感器的研究可从以下几个方面开展:(1)开发新材料。功能材料是发展传感器技术的重要基础,随着材料科学的发展,人们可以通过控制材料成分来设计制造出适用于不同用途的传感器敏感材料。(2)采用新工艺。先进的纳米技术、化学/光学成像技术、溶胶-凝胶技术、微电子技术和计算机信息处理等技术的引入有助于制造出综合性能稳定、可靠性高、体积小、重量轻的敏感元件。(3)研究新方法和新体系。提高灵敏度、稳定性、选择性,降低成本,实现超微量检测,扩大应用范围。第15页,本讲稿共16页 谢谢!第16页,本讲稿共16页