《数学九年级上沪科版24.5位似图形课件.ppt》由会员分享,可在线阅读,更多相关《数学九年级上沪科版24.5位似图形课件.ppt(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、ABACBCO23.523.5位似图形位似图形复习回顾复习回顾 相似图形:相似多边形:形状相同的两个图形。两个边数相同的多边形,对应角相等,对应边的比相等。经过放大或缩小,没有改变图形形状,与原图是相似的。下图各组是经过放大或缩小得到的多边形,它们相似吗?如果相似,观察那么这种相似什么特征?是相似图形每组对应顶点连线相交于一点,对应边互相平行或共线位似位似一位似图形的概念一位似图形的概念相似相似 对应顶点的连对应顶点的连线相交于一点线相交于一点对应边平行(或共线)对应边平行(或共线)注:注:三者缺一不可!三者缺一不可!如果两个图形不仅如果两个图形不仅相似相似,而且每组对应顶点所在,而且每组对应
2、顶点所在的直线都的直线都经过同一点经过同一点,对应边互相平行(或共线)对应边互相平行(或共线),那么这样的两个图形叫做那么这样的两个图形叫做位似图形位似图形,这个点叫做这个点叫做位似中心位似中心,其相似比又叫做其相似比又叫做位似比位似比.BAAEDCEDCB例例1.1.判断下列各对图形是不判断下列各对图形是不是位似图形是位似图形.(1)(1)相似五边形相似五边形ABCDEABCDE与五边形与五边形A AB BC CD DE E;(是是 )(2)(2)正方形正方形ABCDABCD与正方形与正方形A AB BC CD D;(是是 )CABDCBAD(3)(3)等边三角形等边三角形ABCABC与等边
3、三角形与等边三角形A AB BC C.CCBBAA(是是 )例例2 2、判断下列各对图形哪些是相似图形,哪些是位似、判断下列各对图形哪些是相似图形,哪些是位似图形图形.结论结论1 1:位似图形是:位似图形是相似相似 图形的图形的特殊特殊情形情形,位似的要求更为苛刻。相似且位似相似且位似相似但不是位似相似但不是位似ABCDEFG相似但不是位似相似但不是位似AEDBDEBC两个正方形两个正方形观察下列位似图形的位似中心,你发现了什么?观察下列位似图形的位似中心,你发现了什么?结论结论2:位似中心的位置由两个图形的位置决定,可能在:位似中心的位置由两个图形的位置决定,可能在 两个图形的同侧两个图形的
4、同侧,异侧异侧,图形的内部图形的内部,边上边上,或,或顶点上顶点上二二.位似图形的性质位似图形的性质 特殊特殊性质性质:位似图形上任意一对对应顶点到位似中心的距离距离之比之比等于等于位似比位似比.一般性质一般性质:具有相似多边形的性质周长比等于位似比面积比等于位似比的平方O.ABCACB.练习与拓展1 1如图,已知如图,已知ABCABC和点和点O.O.以以O O为位似中心,求作为位似中心,求作ABC 和和ABCABC位似,且位似比为位似,且位似比为2.2.OA:OA=OB:OB=OC:OC=2:1特殊性质在作图中的运用.注:在作图中,如无特殊说明,位似比通常代表新图形与原图形的比。注:在作图中
5、,如无特殊说明,位似比通常代表新图形与原图形的比。k 1,将原图形放大,将原图形放大,0k1,将原图形缩小,将原图形缩小确定位似中心画出图形确定位似比确定原图的关键点找出新图形的对应关键点思考:还有没其他作法?思考:还有没其他作法?O.ABACBC如果位似中心给定在三角形内部呢?如果位似中心给定在三角形内部呢?.ACBOABC.ABACBC0以以0 0为位似中心把为位似中心把ABCABC缩小为原来的一半。缩小为原来的一半。BAxBAo在平面直角坐标系中在平面直角坐标系中,有两点有两点A(6,3),B(6,0),A(6,3),B(6,0),以原点以原点O O为为位似中心位似中心,相似比为相似比为
6、1:3,1:3,把线段把线段ABAB缩小缩小.A(2,1)B(2,0)观察对应点之间的坐标观察对应点之间的坐标的变化的变化,你有什么发现你有什么发现?探索探索:y位似变换与平面直角坐标系A (6,3)B (6,0).BAxyBAo在平面直角坐标系中在平面直角坐标系中,有两点有两点A(6,3),B(6,0),A(6,3),B(6,0),以以原点原点O O为位似中心为位似中心,位似比为位似比为1:3,1:3,把线段把线段ABAB缩小缩小.A(2,1),B(2,0)ABA(-2,-1),B(-2,0)结论结论3 3:在平面直角坐标系中:在平面直角坐标系中,以以原点原点O O为位似中心为位似中心,位似
7、比为位似比为k k,若原图形上点若原图形上点A的坐标为的坐标为(x,y),),那么位似图形对应点那么位似图形对应点A的坐标为的坐标为(kx,ky)或()或(-kx,-ky)观察对应点之间的坐标观察对应点之间的坐标的变化的变化,你有什么发现你有什么发现?A (6,3),B (6,0),xyo在平面直角坐标系中在平面直角坐标系中,ABC,ABC三个顶点的坐标分别三个顶点的坐标分别为为A(2,3),B(2,1),C(6,2),A(2,3),B(2,1),C(6,2),以原点以原点O O为位似中心为位似中心,位位似比为似比为2 2画它的一个位似图形画它的一个位似图形.BACA(4,6),B(4,2),
8、C(12,4)放大后对应点的坐标分别是:放大后对应点的坐标分别是:BAC探索探索2:2:2461213624还有其他的答案吗?还有其他的答案吗?xyoA(-4,-6),B(-4,-2),C(-12,-4)B(2,1)A(2,3)C(6,2)此时,位似中心0位于两图形的异侧,做题时注意审题!看清要求(其中一个,异侧,同侧等)K=2xyo例例3.3.在平面直角坐标系中在平面直角坐标系中,四边形四边形ABCDABCD的四个顶点的坐标的四个顶点的坐标分别为分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4),A(-6,6),B(-8,2),C(-4,0),D(-2,4),画出它的画出它
9、的 以以原点原点O O为位似中心为位似中心,位似比为位似比为1/21/2的位似图形的位似图形.解:如图,因为0为位似中心,位似比为1/2,分别取点A(-3,3),B(-4,1),C(-2,0),D(-1,2)依次连接点A B C D就是要求作的位似图形。就是要求作的位似图形。BACDABCD一个一个CBDA1.1.位似图形位似图形2.2.位似图形的性质位似图形的性质3.3.利用位似的特殊性质可以把一个图形放大或缩小利用位似的特殊性质可以把一个图形放大或缩小小结小结4.有关的三个结论有关的三个结论结论结论1:位似图形是相似图形的:位似图形是相似图形的特殊特殊情形情形结论结论3:结论:结论3:在平
10、面直角坐标系中:在平面直角坐标系中,以以原点原点O为位似中心为位似中心,位位似比为似比为k,若原图形上点若原图形上点A的坐标为的坐标为(x,y),),那么位似图形对那么位似图形对应点应点A的坐标为的坐标为(kx,ky)或()或(-kx,-ky)结论结论2:位似中心的位置由两个图形的位置决定,可能在:位似中心的位置由两个图形的位置决定,可能在两个两个 图形的同侧图形的同侧,异侧异侧,图形的内部图形的内部,边上边上,或,或顶点上顶点上DEFAOBC三角形三角形ABCABC放大为原来的放大为原来的2 2倍倍DEFAOBC对应点连线都交于对应点连线都交于_对应线段对应线段_位似中心位似中心平行或共线平行或共线