《基于零件虚拟工序队列的FMS动态调度.docx》由会员分享,可在线阅读,更多相关《基于零件虚拟工序队列的FMS动态调度.docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、基于零件虚拟工序队列的FMS动态调度 对于有效地利用已有FMS中的各种资源提高生产效率而言,合理完善的调度限制系统是关键。调度是指在时间意义上全部系统资源的定位、安排和处理,其系统分为加工子系统和运输子系统(刀具流系统和物料流系统),其调度分为静态调度和动态调度。FMS的调度限制比较困难,尤其当涉及的因素较多时,若要依据某一调度目标得到最优调度结果,往往很难满意实时性的要求。其实,多数状况下调度目标是人为的,FMS调度只要得到近优解即可1,2。本文在零件静态分批的基础上提出零件虚拟工序队列的概念,并在此基础上提出1个解决FMS动态生产调度的启发式调度算法。1FMS调度问题描述FMS动态调度及零
2、件静态分批之间的关系见图1。这里所探讨的动态调度是在零件静态分批的基础上以分好的零件子批为加工任务进行调度的3,4。因在加工任务静态分批阶段已充分考虑了系统的部分资源(如装卸站、缓冲站、刀具、夹具、托盘等因素),故在此不需考虑。图1动态调度与零件静态分批之间的关系FMS动态调度的目标是使系统具有较好的加工性能,一方面能使系统具有较高的生产率,即较高的设备利用率,另一方面能刚好完成给定的加工任务。在本文中,调度主要考虑2方面的性能,即尽量满意加工任务中零件的交货期和尽可能削减系统生产时间。用以下2个指标来描述:工件平均延误时间(meantardiness,MT)和工件平均流通时间(meanflo
3、w-time,MFT)。MT反映零件是否满意交货期,MFT则反映工件在系统中的驻留时间,能较全面地反映系统生产时间。调度目标f=minW1MT+W2MFT式中,W1、W2为权值;反映调度目标中MT和MFT的侧重程度。2零件虚拟工序队列的概念及特点零件在FMS中加工的过程可用排队理论和方法来描述,由于加工中影响因素较多,如零件的某些工序存在可替代加工工序和零件的加工工序之间的加工先后关系的柔性等。这些因素给系统性能的提高创建了有利的条件,但无疑也为系统的调度限制系统的实现增加了难度。这也是目前大多数调度限制系统采纳固定加工工艺的主要缘由之一。利用本文提出的零件虚拟工序队列方法可大幅度降低调度问题
4、的困难性。零件虚拟工序队列方法的基本原理见图2。假设系统内的每一台机床前都存在一队列(集合),该集合中存放的是当前该设备能够加工的工序(机床的可加工工序集合)。在调度起先时各设备前可加工工序集合为空(也可按给定系统状态设定),当有新零件进入系统或设备加工完一零件时,首先判明该零件当前能加工的工序及其对应的机床,然后使这些工序进入对应机床的可加工工序集合中。若当前可调度工序存在可替代加工工序,则该工序同时加入到对应设备的可加工工序集合中。设备的下一个加工零件是在该机床的可加工工序集合中按肯定的规则进行选择的。当机床选择好1个工序后,从全部设备的可加工工序集合中删去该工序对应的零件的全部工序,从而
5、避开不同设备同时选择同一零件的状况。图2零件虚拟工序队列概念图采纳零件虚拟工序队列方法有如下特点:(1)有广泛的适应性。对机床故障、紧急零件进入、可替代加工工序以及变更调度目标等通常意义上的重调度状况都很简单处理。(2)避开了算法中零件在不同的机床队列之间不必要的相互传送及调整。(3)在零件优化分批的基础上,可实现批内各机床加工负荷的近似自动平衡。机床最大负荷不均衡量为零件的最终一道加工工序的加工时间。(4)适用于多种零件的混流生产,也适用于传统的JobShop生产。(5)简化了FMS动态调度限制中的规则系统,使得调度限制更易于实现。用零件虚拟工序队列方法保证了各加工设备加工负荷的近似均衡,若
6、结合合适的调度规则在机床的可调度零件集合中选择合适的加工零件,所得到的结果必为系统的近优解甚至最优解。3基于零件虚拟工序队列的FMS启发式动态调度算法该算法是在加工任务分批的基础上,同时考虑了工件运输系统的影响而提出的。机床前输入/输出缓冲站配置不同,其调度算法略有不同。本文针对机床前具有1个输入和1个输出缓冲器的典型FMS状况进行探讨,提出动态调度算法,其流程图见图3。图3FMS动态调度原理图在调度算法中提出了系统决策点的确定方法。通过计算各机床上全部工件的加工完成时刻,确定具有最小加工完成时间的机床,把该机床当前加工工件的加工完成时刻作为决策点。该方法一方面全面考虑了各机床的加工负荷状况,
7、另一方面也找出了系统中最迫切须要调度决策的机床进行决策和运输,从而提高整个加工和运输系统的利用率,使总加工时间最短。设备在加工过程中状况主要有6种(见图4)。图4a和图4b中,系统中各机床均有工件加工,且输入存储器中皆有待加工工件,选择t2时刻最小的机床(机床2)的t1时刻作为决策点tD。图4机床工件选择的决策点分析示意图图4c和图4d中,此时系统中有机床(机床1)输入存储器中无待加工工件(t2=),找出t2最小的机床(机床3)的t1作为决策点tD。图4e和图4f中,此时系统中有机床(机床1)当前为空闲状态,同样找出t2最小的机床(机床2)的t1作为决策点tD。除上面几种状况外,还有1种特别状
8、况,即各机床输入存储器中都为空、各机床或空闲、或只有1个工件。此时把新工件进入系统时刻或系统中工件的工序加工完成时刻作为系统的决策点。在算法中提出的动态预调度方法,能在系统决策点处预先决策好机床待加工的零件,并通知零件运输系统送入机床的输入缓冲站中,这样当机床加工好零件后可干脆通过托盘交换装置把机床上的零件送入输出缓冲站,并把输入缓冲站中的零件送入机床。零件的动态预调度能显著地削减机床的等待时间,提高机床的生产率。为了实现调度目标,提出调度规则的动态选择方法,即依据系统的主调度目标,确定系统的主调度规则。在系统中未出现特别状况时,用主调度规则实现对系统的调度;若出现特别状况,则依据系统的协助调
9、度目标和特别状况的类型确定协助调度规则。主调度规则和协助调度规则在系统中的动态选择,使系统可达到较好的主调度目标和协助调度目标。本文通过采纳最小松弛时间和零件优先级规则可使MT最小,从而保证零件的交货期。4实例仿真依据上面提出的零件虚拟工序队列的概念及动态调度算法,以直线型双排布局的FMS为例,在我们所研制的FMS动态调度仿真系统上对1个典型的加工任务进行仿真试验。该FMS由5台加工中心、1台AGV(正常运行速度为0.2m/s)、1个装卸站、8个缓冲站和8个可用托盘组成。零件的某一子批加工安排(指经静态分批后生成的子加工安排)见表1,零件的加工工艺见表2,在没有对动态调度仿真系统进行人工干预的
10、状况下经过14.29332min的仿真试验得出仿真结果。系统总加工时间为23.8222h,总生产率为2.3955件/h,所用托盘数为6个。表3给出了机床和运输小车的仿真性能结果。因考虑了零件的可替代加工工序,且是在零件静态分批的基础上进行的,所以无法供应可供比较的例子。表1零件的子批加工安排零件编号批量交货期(天)零件优先级对应托盘数A120311A212212A325321A424221A524311表2零件加工工艺及可替代加工工序零件编号工序加工时间(min)机床1机床2机床3机床4机床5A112025225252331012A216065702252020A31405024040353354040A4120232302525A5130202252525315121544525表3对该子批零件的调度结果机床编号利用率(%)通过工件数加工时间(h)生产率(件/h)MC178.7773817.50021.5951MC289.132620.36611.0914MC386.2622419.74961.0075MC452.3332411.66681.0075MC578.9872517.98341.0494AGV140.392-通过对调度结果的分析可知,本文提出的基于零件虚拟工序队列的动态调度算法是切实可行的。