《人教版高一数学知识点总结3篇 新人教版高一数学知识点总结.docx》由会员分享,可在线阅读,更多相关《人教版高一数学知识点总结3篇 新人教版高一数学知识点总结.docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版高一数学知识点总结3篇 新人教版高一数学知识点总结下面是我收集的人教版高一数学学问点总结3篇 新人教版高一数学学问点总结,供大家参考。人教版高一数学学问点总结1圆的方程定义:圆的标准方程(x-a)2+(y-b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。直线和圆的位置关系:1.直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式来探讨位置关系.>0,直线和圆相交.=0,直线和圆相切.<0,直线和圆相离.方
2、法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较.dR,直线和圆相离.2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k或已知直线上一点两种状况,而已知直线上一点又可分为已知圆上一点和圆外一点两种状况.3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题.切线的性质圆心到切线的距离等于圆的半径;过切点的半径垂直于切线;经过圆心,与切线垂直的直线必经过切点;经过切点,与切线垂直的直线必经过圆心;当一条直线满意(1)过圆心;(2)过切点;(3)垂直于切线三特性质中的两个时,第三特性质也满意.切线的判定定理经过半径的外端点并且垂直于这条半径的直线是圆的
3、切线.切线长定理从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.圆锥曲线性质:一、圆锥曲线的定义1.椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆.2.双曲线:到两个定点的距离的差的肯定值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线.即.3.圆锥曲线的统肯定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线.当01时为双曲线.人教版高一数学学问点总结21、函数零点的定义(1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy的零点。(2)方程0)(xf有实根?函数()yfx的图像与x轴有交
4、点?函数()yfx有零点。因此推断一个函数是否有零点,有几个零点,就是推断方程0)(xf是否有实数根,有几个实数根。函数零点的求法:解方程0)(xf,所得实数根就是()fx的零点(3)变号零点与不变号零点若函数()fx在零点0x左右两侧的函数值异号,则称该零点为函数()fx的变号零点。若函数()fx在零点0x左右两侧的函数值同号,则称该零点为函数()fx的不变号零点。若函数()fx在区间,ab上的图像是一条连续的曲线,则0)()(2、函数零点的判定(1)零点存在性定理:假如函数)(xfy在区间,ba上的图象是连绵不断的曲线,并且有()()0fafb,那么,函数)(xfy在区间,ab内有零点,即
5、存在),(0bax,使得0)(0xf,这个0x也就是方程0)(xf的根。(2)函数)(xfy零点个数(或方程0)(xf实数根的个数)确定方法代数法:函数)(xfy的零点?0)(xf的根;(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy的图象联系起来,并利用函数的性质找出零点。(3)零点个数确定0)(xfy有2个零点?0)(xf有两个不等实根;0)(xfy有1个零点?0)(xf有两个相等实根;0)(xfy无零点?0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定.3、二分法(1)二分法的定义:对于在区间,ab上连绵不断且()()0fafb的函数()yfx,通过
6、不断地把函数()yfx的零点所在的区间一分为二,使区间的两个端点逐步靠近零点,进而得到零点的近似值的方法叫做二分法;(2)用二分法求方程的近似解的步骤:确定区间,ab,验证()()0fafb,给定精确度e;求区间(,)ab的中点c;计算()fc;()若()0fc,则c就是函数的零点;()若()()0fafc,则令bc(此时零点0(,)xac);()若()()0fcfb,则令ac(此时零点0(,)xcb);推断是否达到精确度e,即ab,则得到零点近似值为a(或b);否则重复至步.人教版高一数学学问点总结3直线和平面垂直直线和平面垂直的定义:假如一条直线a和一个平面内的随意一条直线都垂直,我们就说
7、直线a和平面相互垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。直线与平面垂直的判定定理:假如一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。直线与平面垂直的性质定理:假如两条直线同垂直于一个平面,那么这两条直线平行。直线和平面平行没有公共点直线和平面平行的定义:假如一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。直线和平面平行的判定定理:假如平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。直线和平面平行的性质定理:假如一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。多面体1、棱柱棱柱的定义:有两
8、个面相互平行,其余各面都是四边形,并且每两个四边形的公共边都相互平行,这些面围成的几何体叫做棱柱。棱柱的性质(1)侧棱都相等,侧面是平行四边形(2)两个底面与平行于底面的截面是全等的多边形(3)过不相邻的两条侧棱的截面(对角面)是平行四边形2、棱锥棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥棱锥的性质:(1)侧棱交于一点。侧面都是三角形(2)平行于底面的截面与底面是相像的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方3、正棱锥正棱锥的定义:假如一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。正棱锥的性质:(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。(3)多个特别的直角三角形a、相邻两侧棱相互垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。b、四面体中有三对异面直线,若有两对相互垂直,则可得第三对也相互垂直。且顶点在底面的射影为底面三角形的垂心。