《人教版高一数学算法案例第三课时 新课标 人教A.ppt》由会员分享,可在线阅读,更多相关《人教版高一数学算法案例第三课时 新课标 人教A.ppt(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、算法案例(第三课时)(第三课时)2021/8/9 星期一1案例案例3 3 进位制位制2021/8/9 星期一2一、进位制一、进位制1 1、什么是进位制?、什么是进位制?2 2、最常见的进位制是什么?除此之外还有哪些、最常见的进位制是什么?除此之外还有哪些常见的进位制?请举例说明常见的进位制?请举例说明进位制是人们为了计数和运算方便而约定的记数系统。进位制是人们为了计数和运算方便而约定的记数系统。进位制是一种记数方式,用有限的进位制是一种记数方式,用有限的数字数字在不同的位在不同的位置表示不同的数值。可使用数字符号的个数称为基置表示不同的数值。可使用数字符号的个数称为基数,基数为数,基数为n n
2、,即可称,即可称n n进位制,简称进位制,简称n n进制。进制。2021/8/9 星期一3半斤半斤=八两八两 我们常见的数字都是十进制的,比如一般的数值计算,但是并不是生活中的每一种数字都是十进制的.古人有半斤八两之说,就是十六进制与十进制的转换.比如时间和角度的单位用六十进位制,计算“一打”数值时是12进制的。电子计算机用的是二进制 2021/8/9 星期一43 3、我们了解十进制吗?所谓的十进制,它是如何构成的?、我们了解十进制吗?所谓的十进制,它是如何构成的?十进制由两个部分构成十进制由两个部分构成例如:例如:3721其它进位制的数又是如何的呢?其它进位制的数又是如何的呢?第一、它有第一
3、、它有0 09 9十个数字;十个数字;第二、它有第二、它有“数位数位”,即,即从右往左从右往左为个位、十位、为个位、十位、百位、千位等等。百位、千位等等。(用用10个数字来记数,称基数为个数字来记数,称基数为10)表示有:表示有:1个个1,2个十,个十,7个百即个百即7个个10的平方,的平方,3个千即个千即3个个10的立方的立方十进制:十进制:“满十进一满十进一”2021/8/9 星期一5二、二、二进制二进制二进制是用二进制是用0 0、1 1两个数字来描述的如两个数字来描述的如1100111001二进制的表示方法二进制的表示方法区分的写法:区分的写法:1100111001(2 2)或者或者(1
4、1001)(11001)2 2八进制呢?八进制呢?如如73427342(8)(8)k k进制呢?进制呢?a an na an-1n-1a an-2n-2aa1(k)1(k)?2021/8/9 星期一6三、二进制与十进制的转换三、二进制与十进制的转换1 1、二进制数转化为十进制数、二进制数转化为十进制数例例1 1 将二进制数将二进制数110011110011(2)(2)化成十进制数化成十进制数解:解:根据进位制的定义可知根据进位制的定义可知所以,所以,110011110011(2 2)=51=51将下面的二进制数化为十进制数?将下面的二进制数化为十进制数?(1)11(2)110练习练习2021/
5、8/9 星期一7b=ab=a1 1k k0 0b=ab=a2 2k k1 1+b+bb=ab=a3 3k k2 2+b bb=ab=an nk kn-1 n-1+b+ba ai i=GET ai=GET aiGETGET函数用于取出函数用于取出a a的右数第的右数第i i位数位数i=i+1i=i+1i=1i=1b=ab=ai ik ki-1i-1+b+b将k进制数a转换为十进制数(共有 n位)的程序a=aa=an na an-1n-1 a a3 3a a2 2a a1(k)1(k)=a=an nk k(n-1)(n-1)+a+an-1n-1k k(n-2)(n-2)+a+a3 3k k2 2+
6、a+a2 2k k1 1+a a1 1k k0 0INPUT a,k,nINPUT a,k,ni=1i=1b=0b=0WHILE i=nWHILE i=nt=GET ait=GET aib=t*k(i-1)+bb=t*k(i-1)+bi=i+1i=i+1WENDWENDPRINT bPRINT bENDEND2021/8/9 星期一8(除除2取余法:用取余法:用2连续去除连续去除89或所得的商,然后取余数或所得的商,然后取余数)例例2 把把89化为二进制数化为二进制数解:解:根据根据“逢二进一逢二进一”的原则,有的原则,有892441 2(2220)+1 2(2(2110)+0)+1 2(2(
7、2(2 51)+0)+0)+15 2 212(2(2(2(221)1)0)0)189126025124123022021120所以:所以:89=1011001(2)2(2(2(2321)0)0)12(2(242220)0)12(2523+2200)12624+23002089244144 222022 211011 2 51 2(2(2(2(2 21)+1)+0)+0)+1所以所以892(2(2(2(2 2 1)1)0)0)12、十进制转换为二进制、十进制转换为二进制2021/8/9 星期一9注意:注意:1.1.最后一步商为最后一步商为0 0,2.2.将上式各步所得的余数将上式各步所得的余数从
8、下到上排列从下到上排列,得到:,得到:89=1011001 89=1011001(2 2)2 2、十进制转换为二进制、十进制转换为二进制例例2 2 把把8989化为二进制数化为二进制数5 52 22 22 21 12 20 01 10 0余数余数11112222444489892 22 22 22 20 01 11 10 01 12021/8/9 星期一10练习练习将下面的十进制数化为二进制数?将下面的十进制数化为二进制数?(1 1)1010(2 2)2020例例3 3 把把8989化为五进制数化为五进制数3 3、十进制转换为其它进制、十进制转换为其它进制解:解:根据根据除除k k取余法取余法
9、以以5 5作为除数,相应的除法算式为:作为除数,相应的除法算式为:所以,所以,89=32489=324(5 5)89895 517175 53 35 50 04 42 23 3余数余数2021/8/9 星期一11练习:练习:完成下列进位制之间的转化:完成下列进位制之间的转化:(1)10231(4)=(10);(2)235(7)=(10);(3)137(10)=(6);(4)1231(5)=(7);(5)213(4)=(3);(6)1010111(2)=(4)。2021/8/9 星期一121进位制是一种记数方式,用有限的数字在不同的位置表示不同的数值。可使用数字符号的个数称为基数,基数为k,即可称k进位制,简称k进制。k进制需要使用k个数字;2十进制与二进制之间转换的方法;先把这个k进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果。小结小结2021/8/9 星期一133十进制数转化为k进制数的方法:(除除k取余法取余法)用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数,就是相应的k进制数。2021/8/9 星期一142021/8/9 星期一15